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First-Order Vortex Lattice Melting and Magnetization of YBa2Cu307 —Q
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We present the first non-mean-field calculation of the magnetization M(T) of YBa2Cui07 s both
above and below the flux-lattice melting temperature T (H), in good agreement with experiment.
Fluctuations in both order parameter P(r) and magnetic induction B are included in the Ginzburg-
Landau free energy. The second derivative (82M/BT )H is predicted to be negative throughout the
vortex liquid state and positive in the solid state. The discontinuity in entropy at melting is calculated
to be —0.034k& per Aux line per layer at 50 kOe.

PACS numbers: 74.60.—w, 74.25.Dw, 74.25.Ha, 74.40.+k

Even more than perfect conductivity, the magnetization
M is a sensitive probe of the superconducting state. In
this paper we calculate the magnetization of the most
studied high-T, material, YBa2Cu307 ~, including the
effects of fluctuations [1,2]. We consider an applied field
H ~~c, and also calculate the first-order flux-lattice melting

curve T (H) for the same material. Both M and T„(H)
are in very good agreement with experiment over a range
of magnetic fields.

Our approach is to start from a Ginzburg-Landau free
energy functional that includes the field energy in the
form [3]

G[P, A] = e"'

A(r) ~( ) + l~( )I'+b 4 (B —H)
C 2 8~

d r a( z)Tlg(r)~ + (
—iRv-'

2m

Here P(r) is the complex order parameter, A(r) is the
vector potential, 8 = V X A, e* = 2e is the charge of
a Cooper pair, H = Hz is the applied magnetic field
intensity, and a(T, z), b, and m' are phenomenological
parameters. The periodic z dependence of a(T, z) is
introduced to characterize the underlying layered structure.
We assume that spatial modulation of a(T, z), which acts
as a potential for Cooper pairs, results in a tight-binding
form for i/t(r) along the z axis, thus creating the effective
mass anisotropy y. The integral is to be carried out over
a fixed sample volume V = (@p/H)N4, N, s, where s is
the periodicity of the layered structure, @p = hc/2e is the
Aux quantum, N@ is the number of flux lines threading the
sample, and N, is the number of layers. The Gibbs free
energy density appropriate to an experiment at fixed T and
H is

g = (kti T/V) lnTr~—~ exp( —G [P, A)/kti T) . (2)

We also define free energy "per Aux line per layer"
according to g4, = (@ps/H) g; the internal energy G@ and
entropy 5@ are defined in the same fashion.

To determine the magnetization, we assume a uniformly
fluctuating magnetic induction V X A(r) —= Bz, so that B
can in principle assume different values in the flux liquid
and solid phases. This approximation is most reasonable
in the extreme type-II limit (sc» 1) when density cor-
relations among the vortices are well developed and vor-
tices are clearly defined, as expected in the neighborhood
of the melting line. In addition, the assumption of uni-
form 8 should be best in the vortex liquid phase, where
contributions to the local field B(r) come from many po-
sitionally uncorrelated vortex line segments, as suggested

by Brandt [4], but may still be reasonable in the vortex
solid phase, even though 8 in that phase should develop a
nonzero variance o. = (B(r) ) —(B(r)) .

We evaluate the statistical average (2) using the follow-
ing procedure. First, we expand the order parameter P(r)
in a basis that consists of products of lowest Landau level
states of the operator (2m") '( i RV'i ——e'A/c) in the
a-b plane, and Wannier functions from the lowest band of
states of the operator a(T, z) —(2m*) 'h 8 /dz in the
c direction [5]. This leads to an explicit form for all but
the last term of the integrand in Eq. (1), in terms of the
complex coefficients c~ of the expansion, corresponding
to the kth lowest Landau state in the nth layer [5]. Then
the statistical average implied by Eq. (2) is carried out by
a Monte Carlo (MC) procedure, in which the coefficients
c~, and also the average magnetic induction B, are con-
sidered as fluctuating MC variables. The entire procedure
is closely analogous to the "constant pressure" MC en-
semble well known in classical fiuids [6]. The variables
analogous to pressure and volume are H and B. The MC
step that changes B increases or decreases the area of the
a-b plane at constant vortex number.

Within this approach, the mean field approximatio-n
to (2) is specified by a pair i/t(r) and B, for which
G is minimum [3]. In the normal state [H ) H, .2(T)]
this is achieved for P(r) = 0 and B = H In the.
mixed state, H ~ H, 2(T), the corresponding minimum is
attained for a triangular lattice of straight vortex lines and
magnetization

M —= (B —H)/47t = [H —H„2(T)]//4~(2~ pg —1), .

(3)
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since (t)M/t)T)tt is continuous at that point. Instead,
there is an apparently first-order melting transition at
a lower temperature T (H), as signaled by a weak
discontinuity in the magnetization curves (denoted by
arrows in the figure). The melting curve T (H) inferred
from this discontinuity is shown in the inset to Fig. 1; it is
in good agreement with experiment.

The general behavior of M(H, T) agrees very well with
experiment [10]. For example, the calculated second
derivative (t3 M/t)T )tt is negative throughout the vortex
liquid phase, in accord with recent measurements based
on a differential torque technique [11]. A second-degree
polynomial fit to our magnetization results just above
the melting temperature T yields (t) M/&3T )0 =
—0.0038 ~ 0.002 emucm K for H = 20 kOe, and
(t) M/t)T )tt = —0.0030 ~ 0.002 emucm K z for
H = 50 kOe. Experiment [11] also gives a negative
(t)2M/t)T )tt for fields in the range 10—20 kOe, and of
the same order of magnitude. In the solid phase, we find
our calculated (t) M/t) T )H ) 0.

Another striking feature of our results is the crossing
of the magnetization curves as a function of temperature.
This crossing is also observed in experiment at a similar
temperature [10]. In BizSr2CaCuzOs+~, the same phe-
nomenon has attracted much theoretical attention [12,13],
because it is believed to occur at a unique temperature T*
independent of field. In YBa2Cu307 p, experimental data
of Welp et al. [10] reveal that magnetization curves do
not cross at a single point, presumably because, although
layered, YBa2Cu307 & is only moderately anisotropic.
As may be seen in Fig. 1, our calculated magnetization
curves also fail to cross at a single point. Furthermore,
the order of the calculated crossings as a function of field
is the same as observed in YBa2Cu307 —$ [10].

The second derivative of the magnetization can also be
calculated using the Maxwell relation

~ ~

t)zM l t)(CH/T) &

BT jH ctH )r '

where CH —= T(t) g/t)T )—H is the specific heat of the
sample at constant H [14). Since Eq. (4) equates the
second derivative of one macroscopic quantity to the first
derivative of another, it provides a potentially more precise
way of determining (t) M/ )T )t0 than a direct calculation
of M(T). We have done an MC calculation of CH(H, T),
using the fluctuation-dissipation theorem [15]. Our results
are presented in Fig. 1 (inset). Clearly, d(CH /T)/dH ( 0
in the vortex liquid phase, which implies, in agreement
with experiment [11], that M(T) has negative curvature
throughout the liquid phase, not just in the vicinity of
the mean-field critical temperature T,z(H). The straight
lines in Fig. 1 are constructed using slopes determined
from independent calculations of the magnetization. To
an excellent approximation, they are tangent to the specific
heat curves, as expected from Eq. (4), thus confirming the
self-consistency of our approach. Experimental specific

where Pq = 1.15959.. . is the Abrikosov ratio. In the
limit ~ && 1 studied here, this formula becomes identical
to the original Abrikosov result, which has 47r(2+
1)P~ in the denominator. Thus our approach and approxi-
mations are indeed correct at the mean-field level in this
limit. The corresponding mean-field free energy density
is g = —(87r) '[H, z(T) —H] /(2tt'. pA

—1).
In order to execute the MC calculation for

YBa2Cu307 ~, we use the following set of parameters:
T,o = 93 K, dH, 2(T)/dT = —1.8 X 10 Oe/K, s =
11.4 A. , y = 5, and ~ = 52. Although there is some
experimental evidence that ~ varies with magnetic field
[7], we neglect this field dependence here. In most of
our calculations, we have considered a cell containing
Ny = 10 vortices and N, = 10 layers. Our results
are based typically on (2—3) X 10s MC passes through
the entire sample following -2 X 104 MC passes for
equilibration.

Figure 1 shows the calculated magnetization M(T) of
YBa2Cu307 p as a function of temperature T at three
different values of H. The mean-field predictions are
shown for comparison. There is no sign of a true phase
transition at the mean-field transition temperature T,.2(H),
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FIG. 1. Calculated magnetization M(T) of YBa2Cuqo7 q at
H = 10, 20, and 50 kOe. Dashed lines represent the mean-
field solution (3). Solid lines are spline curves connecting the
calculated points. Arrows denote melting temperatures T„,(H),
as determined by the discontinuity in M(T). Estimated errors
in M(T) are much smaller than the symbol sizes. N& X N, =
10 & 10. Right inset: locus of the liquid-solid phase boundary
in the H-T plane, as determined by our calculations and as
measured by Farrell, Rice, and Ginsberg [8] and Safar et al. [9].
Left inset: specific heat CH as a function of magnetic field,
taken at two temperatures, T = 83 and 87 K. The dashed
line represents the mean-field value CH /T Arrows indicate.MF

the approximate location of the fields at melting H (T)
Straight lines have slopes —0.0038 emucm K at 87 K
and —0.0030 emu cm 3 K 2 at 83 K (see text). N@ X N, =
6' x 6.
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heat data [16]confirm that d(CII /T)/dH ( 0 in the vortex
liquid phase. In the solid phase, our work predicts that
d(CH/T)/dH ) 0. This is in agreement with recent,
high-accuracy specific heat measurements by Schilling and
Jeandupeux [17]on large twinned YBazCu307 q crystals.

Figure 2 shows the in-plane structure factor S(qi, 0)
defined as the thermal average

FIG. 2. (a) In-plane structure factor S(qz, 0), divided by
the "atomic" structure factor exp( —q2i/4), taken in the solid
phase at T = 82.8 K and H = 50 kOe, and averaged over
100 configurations. The central maximum at q& = 0 has been
removed for clarity. (b) Same as (a), but in the liquid phase at
T = 83.0 K.

fora field H = 50 kOe at two temperatures T = 82.8 and
83.0 K, corresponding to the vortex solid and vortex liquid
phases. This dramatic change occurs at the temperature
of the magnetization discontinuity, thus confirming that
this discontinuity signals a melting transition. The regular
periodic structure of the maxima in Fig. 2(a) corresponds
to an ordered crystalline phase, while the concentric rings
of Fig. 2(b) characterize an isotropic Iluid. In both cases,
the deviations from perfect isotropy can be attributed to the
finite size of the sample, as well as to its rectangular shape.

Finally, we address the issue of the order of the melting
transition. As indicated by Fig. 2, upon melting, the vortex
ensemble undergoes a discontinuous symmetry change.
By the well-known argument of Landau [18], the vortex
melting transition has to be first order, with a finite jump
in entropy per unit volume AS. A critical point (defined by
AS = 0) cannot exist, and the liquid-solid phase boundary
must terminate by intersecting either the coordinate axes or
other phase boundaries.

To calculate AS, we use a variant of the histogram
method of Lee and Kosterlitz [19]. In principle, one should
resolve the energy distribution P(G) into two Gaussian
peaks at T, then confirm that the dip between the peaks
scales like a surface energy with increasing sample size
[20]. In the present case, this would be a formidable
computational effort, because AS is small and the two
peaks are not resolved at any accessible system sizes.
Instead, we perform a long MC run (-10"passes through
the entire lattice) near T, starting from the system ground
state. During the simulation, the system flips —2 —4 times
between the two states in equilibrium. In our standard
diffusive sampling algorithm, we can identify continuous
(in MC "time") sequences of representatives belonging to
the same homogeneous phase. The two phases can be
clearly distinguished by their structure factors and mean
internal energy.

In Fig. 3 we plot the probability distribution of internal
energy, P(G), for these two phases in equilibrium at
T —83 K and H = 50 kOe, at three system sizes. The
low-energy peak always corresponds to the ordered vortex
solid phase. Since the entropy change AS@ decreases
with system size, the value AS@ —0.034k& should be
considered an upper bound to AS@ in the thermodynamic
limit. AS@(H = 20 kOe) has a similar size dependence
and is -30% smaller than AS@(H = 50 kOe).

From our calculated AS at melting and the computed
slope (dH/dT) of the melting curve from Fig. 1, we can
estimate the magnetization jump AM at melting via the
Clausius-Clapeyron relation AS/AM = —(dH/dT)„,
Inserting the calculated values of this slope and of AS@,
we obtain AM —0.0014 emucm at H = 50 kOe, and
AM —0.0005 emucm s at H = 20 kOe. These values
are consistent with the directly calculated AM seen in
Fig. 1. In experiment, no finite magnetization jump has
yet been observed [11,21], although transport measure-
ments on untwinned YBa2Cu307 p crystals are widely
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interpreted as evidence for a first-order melting transition
[9,22]. The null result of Farrell et al. [11] for AM
puts an upper bound 554, ( 0.003ktt at H = 20 kOe,
a value almost 10 times smaller than predicted in the
present work. However, as suggested by these authors
themselves, the presence of defects may have suppressed
the measured AM to some extent. This discrepancy
remains to be settled by an experiment that attains perfect
reversibility in both temperature and field.

To summarize, we have presented the first non-mean-
field calculation of magnetization in YBa2Cu307 p, using
a constant-H Monte Carlo technique in conjunction with a
lowest Landau level approximation. Our results yield a
magnetization in very good agreement with experiment
in both the Aux liquid and Aux lattice states, as well as
a melting curve very close to experiment. Our results
provide perhaps the most detailed evidence to date that
a Ginzburg-Landau free energy functional, based on a
complex scalar order parameter, adequately describes the
thermodynamic properties of YBa2Cu307 g near the flux-
lattice melting curve.

FIG. 3. Probability distribution P(G) of internal energy at the
finite-size melting point T —83 K, H = 50 kOe, and three
different system sizes. For each system size, the two separate
peaks represent the distributions of energy within the solid
and the liquid at the same T and H. Because of the weak
dependence of T on system size, we have used for the zero
of 6@ a size-dependent energy. Horizontal bars denote the
calculated latent heats per flux line per layer.
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