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Competition between Electron-Phonon Attraction and Weak Coulomb Repulsion
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The Holstein-Hubbard model is examined in the limit of infinite dimensions. Conventional wisdom
states that charge-density-wave (CDW) order is more strongly affected by Coulomb repulsion than

superconducting order (SC) because of the pseudopotential effect. We find that the CDW-SC phase
boundary does move toward half filling as the Coulomb repulsion increases, but, surprisingly, the CD&
transition temperature is initially more robust against Coulomb repulsion than the superconducting
transition temperature. This puzzling feature is resolved by an analysis of weak-coupling perturbation
theory.

PACS numbers: 74.20.—z, 71.27.+a, 71.38.+i

Interacting electronic systems with both electron-
electron repulsion and phonon-mediated attractive inter-
actions display a rich variety of ground states due to the
competition between these interactions. In conventional
low-temperature superconductors (SC), the electron-
phonon interaction dominates over the Coulomb repulsion,
since the latter is reduced from its bare values by the so-
called pseudopotential effect [1,2]. The electron-phonon
interaction is also believed to be responsible for charge-
density-wave (CDW) order in weakly doped BaBiO, .

However, the Coulomb repulsion dominates over the
electron-phonon interaction in the high-temperature su-
perconducting cuprates, with commensurate spin-density-
wave (SDW) order occurring in the (undoped) parent
compounds.

Although the Coulomb interaction (in the form of the
Hubbard model [3,4]) and the electron-phonon interaction
(in the form of the Holstein model [5]) have both been
extensively studied, there has been only limited work
on the combined Holstein-Hubbard model [6] and only
one exact theorem for the case of an attractive Coulomb
interaction [7].

The conventional wisdom for the effect of the Coulomb
interaction on a superconductor with strong electron-
phonon interactions is that the Coulomb repulsion is re-
duced from its bare values. This is because the electron-
phonon interaction is retarded, allowing the electrons
to attract each other, through the exchange of a virtual
phonon, without being at the same lattice site at the same
time. A quantitative estimate for this so-called pseudopo-
tential effect finds that the (dimensionless) Coulomb re-
pulsion p(p, )UC is reduced to

p(t )Uc .=, (1)
1 + p (p, ) Uc ln(W/2'�~ )

'

where p(p, ) is the electronic density of states (DOS) for
an electron (of one spin) at the Fermi energy, Uc is the
bare Coulomb repulsion, W is the electronic bandwidth,
and cuD is the Debye frequency. There is, however,
no pseudopotential effect for a CDW distortion, because

retardation effects play a limited role in a static CDW,
where the electrons remained paired at every other lattice
site. Therefore, the conventional wisdom says that the
Coulomb repulsion will reduce the transition temperatures
for CDW order much more than for SC, and that the SC
phase is thereby stabilized relative to the CDW phase.

The dynamical mean-field theory (MFT) [8] has been
employed to exactly solve the Hubbard [9] and Holstein
[10) models in infinite spatial dimensions using the quan-
tum Monte Carlo (QMC) algorithm of Hirsch and Fye [11].
The dynamical MFT is a generalization of the Migdal-
Eliashberg theory of superconductivity [12] that includes
all effects of vertex corrections and nonconstant DOS.

The Holstein-Hubbard model,

2 ci~ cjoy + g g x ( itn+ini J 1)
(i,j)a 1

+ Ucgntn;&+ —g(
' +MB x,'), g)

l

is written in standard notation: c; is a creation opera-
tor for an electron localized at site i with spin a", n;

c; c; is the corresponding number operator; x; is the
phonon coordinate at site i; and p; is its momentum. The
hopping integral is t =: t"/2~d, the deformation potential
is g, U~ is the Coulomb repulsion, 0 is the phonon fre-
quency, and M = 1 is the phonon mass. The scaled hop-
ping integral I determines the energy unit and is set equal
to 1 (t" = 1). The effective electron-electron attraction
(due to phonon exchange) satisfies U = —

g /MA, and
competes with the Coulomb repulsion U~ ) 0.

The Holstein-Hubbard model is solved by QMC
simulation. The QMC algorithm determines the local
electronic Green's function G(i co, ) at each fermionic
Matsubara frequency co„:=7rT(2n + 1), by mapping the
infinite-dimensional lattice to an impurity problem [3,13].
The Green's function satisfies

G(ico„) = F [i co„+ p, —X(ico„)], (3)
with P(i co„) the electronic self-energy and F (z):=jdy p ( y)/(z —y) the rescaled complementary error
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function of a complex argument [p(y):= exp( —
y )/~sr

is the noninteracting DOS].
The momentum-dependent susceptibility g(q) =

Tg f „(q) =: Tg f(q, ior, i'„) (for CDW, SDW, or
SC order) satisfies a Dyson equation

X .(q) = ~.'(q)~.. —T g X.'(q)l .,~,.(q) (4)

for each ordering vector q, with y the relevant bare sus-
ceptibility, and I „ the local irreducible vertex function.
The bare susceptibility for commensurate [q = Q:=
(rr, ~, 7r, . . .)] CDW or SDW order is

G(l tdn)

tron + p ~(train)
(5)

(b) (c)

FIG. 1. Lowest-order contribution to the irreducible vertex
function in the (a) charge-density-wave, (b) superconducting,
and (c) spin-density-wave channels. The solid lines denote
electron propagators, the wiggly lines denote phonon propa-
gators, and the dotted lines denote the Coulomb repulsion.

with a more complicated form for incommensurate wave
vectors [14]. On the other hand, the uniform bare
susceptibility for SC order satisfies

Im G(i iu„)
ru„—Im X, (i cu„)

The irreducible vertex functions are extracted directly
from the QMC data [5]. Figure 1 displays the lowest-
order diagrammatic contributions to the vertex functions
in the (a) CDW, (b) SC, and (c) SDW channels.

Transition temperatures are found by calculating the
temperature where the susceptibility for each ordered
phase diverges. The highest transition temperature T,
determines the initial symmetry of the ordered phase.

The phase diagrams for the Holstein-Hubbard model,
with g = 0.5, 0 = 0.5, U = —1.0, and Uc = 0.0, 0.25,
0.5, 0.75, are displayed in Fig. 2. These phase diagrams
are determined by QMC calculations and by a second-
order iterated perturbation theory (IPT) [15] (there are no
detectable phase transitions with the IPT for Uc = 0.75).
The solid dots (lines) depict the commensurate CDW, the
open dots (dotted lines) depict the incommensurate order,
and the open triangles (dot-dashed lines) depict the SC
phase for the QMC (IPT) calculations.

The QMC data display two types of notable behavior.
First, there are no stable incommensurate phases when

U~ = 0; the incommensurate phases become stable near
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FIG. 2. Phase diagram for the Holstein-Hubbard model with

g = 0.5, 0 = 0.5, U = —1.0, and U~ = 0.0, 0.25, 0.5, and
0.75. The solid dots (lines) are for the commensurate CDW,
the open dots (dotted lines) are for the incommensurate CDW,
and the open triangles (dot-dashed lines) are for the SC as
determined from a QMC (IPT) calculation. There are no
transitions detected by the IPT for Uz = 0.75. The dashed
line through the QMC points is a guide to the eye.

the CDW-SC phase boundary only for U~ ~ 0. The
explanation for this is simple: if the SC phase was
ignored, the CDW phase would suffer a commensurate-
incommensurate phase transition as T, ~ 0 in a similar
fashion to the repulsive Hubbard model [16]; however,
for A = 0.5, the SC transition temperature is greater than
the highest incommensurate CDW transition temperature,
precluding its appearance at U~ = 0. As Ut- increases,
the SC T,. drops below the maximal incommensurate
CDW T„which allows the incommensurate order to
occur (in the limit A ~ 0, incommensurate order will
occur at Ut- = 0 because the SC T, will be smaller than
the maximal incommensurate T„whereas in the limit
II ~ ~ there is never any incommensurate order, since
CDW phases occur only at half filling). Second, even
though the region where the CDW phase is stable shrinks
as U~ is increased, the CDW transition temperature
is reduced by a smaller factor than the SC transition
temperature, in opposition to the conventional wisdom.

The IPT approximation is reasonably accurate for both
the CDW and SC T,, 's and for the phase boundary
between CDW and SC order. The approximate CDW
transition temperature is again reduced by a smaller factor
than the SC transition temperature as U~ increases. Thus
one can understand this effect by studying the weak-
coupling formalism. The IPT errs only by predicting a
large incommensurate CDW-ordered region at U~ = 0,
which shrinks as U& increases, exactly opposite to what
the QMC found, and it is unable to predict any finite T, 's
for U~ = 0.75.

The modification of the CDW transition temperature at
half filling is plotted versus U~ in Fig. 3. The CDW phase
is followed for 0 ( Uc ( iUi, since a SDW phase is ex-
pected to be the stable phase for UL ) iUi at half filling
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FIG. 3. Relative change in the CDW transition temperature at
half filling due to Coulomb repulsion. Four different cases are
shown: g = 0.4 (solid dots), g = 0.5 (open dots), g = 0.625
(open triangles), and g = 1.0 (open squares). The dotted lines
are the weak-coupling approximations for g = 0.4, 0.5, and
0.625. The parameter I is adjusted to produce the correct slope
as U~ 0. The solid line is a fourth-order strong-coupling
approximation for the g = 1.0 case.

Uc/IUJ

p(p) IUI

1 1

P(p)IUI P(p)UC/[1 + P(p)UcI) P(p)IUI
(7)= exp

[6] (this can be seen at weak coupling by comparing the
CDW vertex to the SDW vertex in a power series as shown
in Fig. 1, indicating I sow ) I cow when Uc ) IUI).
T, (Uc) is smaller than T, (Uc = 0) in the weak-coupling
regime (g ( 0.625) and the curves are nearly linear in

Uc/~U~, with a decreasing slope as g increases. In the
strong-coupling regime (g = 1.0), the Coulomb repulsion
initially enhances the transition temperature (since it re-
duces the energy of the virtual state formed by breaking
the bipolaron) before causing a reduction as Uc ~U~.

Much of the unexpected and notable behavior found
in the QMC and IPT results can be illustrated within
an analytic approximation. A weak-coupling analysis of
the CDW and SC transition temperatures is performed
in the square-well approximation [where the soft cut-
offs II /fD + (cu —~„)2)are replaced by hard cutoffs
0(~, —~co ~)0(co, —~cu„~)] [17]. A first-order calcula-
tion is accurate only to the lowest order in 1/U. Since this
analysis is standard, we only summarize the main results
here. Extensions of these results to include vertex correc-
tions will be given elsewhere.

In the SC channel, for small Uc one finds [18]
T"(U.)
Tsc (0)

for arbitrary filling, with

T ~ ImF (ice, + p) 2

p(p)
i i

Af,g 7r

dy P(Y + P) + P(Y —P) i y
tan '

2p(p, ) ~c
(8)

and ~~,. is the cutoff frequency for the square well (the second line holds when T, && ~,). In. the limit ~, ~ 0, one
finds I ~ In(W/2~Li, ), as in the original work [1],but the above expression also holds for arbitrary electronic DOS [19].

Calculations in the CDW phase are more difficult. Restricting to the case of half filling (p, = 0) and again for small
U~, one finds

TCDw(U )
7'C Dw (0)

1 1

p(0) [(2 —n(Uc)) IUI Uc] p(0) (2 —n(0)) ~U)

Uc/IUI + n(UC) n(0)
i2 — (0)Pp(0) I Ul

(9)

(10)

which does approach 1 as cu, ~ (I ~ 0) and 0 as
cu, 0 [I 1/p (0) (2~ U

~

—Uc)] [19]. Substituting
Eq. (10) into Eq. (9) finally yields

TCDW(U )
&"~(o)

I Ul p lo) I
U I )

The resolution of the puzzle of how U~ affects
T, (CDW) vs T, (SC) is seen by examining the small Uc
limits of Eqs. (7) and (9). The pseudopotential effect

with n(Uc) a parameter that measures the reduction of
the direct electron-phonon attraction by the exchange
diagrams in Fig. 1(a). This parameter satisfies 0 & n (
1 with n ~ 0 as A ~ 0 and n ~ 1 as II ~ ~ [5]. An
estimate for n (in the square-well approximation) yields

Ip(0) (1UI —Uc)(U.) =1-
I —Ip(0) ~U(

disappears in the SC channel as Uc ~ 0, and the effect
on T, is enhanced away from half filling since the DOS
satisfies p(p, ) & p(0). On the other hand, the effect of
U~ on the CDW transition temperature is further reduced
by the parameter I in Eq. (11). For these two reasons,
U~ initially reduces the SC T, more than it does the
CDW T, . Conventional wisdom, however, is restored
when p (p, ) = 1/ In(W/2cuD) as the pseudopotential
effect becomes operative.

Figure 3 shows the weak-coupling results (with the
parameter I fitted to the QMC data for small Coulomb
repulsion). One can see the weak-coupling formalism is
excellent for g = 0.4, but becomes less accurate as the
coupling strength increases.

How is this analysis modified in the conventional limit
of A ~ 0'? Since n ~ 0 in this limit, the robustness
of the CDW T, against U& actually inc~eases. The
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pseudopotential effect still vanishes for small Coulomb
repulsion [p(p, )Uc « I/ In(W/2co~)], but the crossover
value of U~, where the conventional wisdom is restored,
is also small, and U~ does not lie in this small-Coulomb-
repulsion regime for conventional materials.

The CDW phase becomes less robust against U~ as
the system is doped away from half filling. Here the
conventional wisdom is also restored, and it explains
why both the incommensurate CDW and the SC phases
are stabilized relative to the commensurate CDW (in the
sense that the CDW-SC phase boundary moves toward

half filling and the incommensurate CDW phases become
stable).

In the strong-coupling limit, where the electrons are
paired into bipolarons at a temperature much higher
than the transition temperature for the ordered phase,
the initial effect of Ut- is to enhance the CDW T, ,
because Coulomb repulsion reduces the bipolaron binding
energy Eb, thereby increasing T, ~ I /Eb. The analysis
for the pure electron-phonon case is easily modified by
changing the energy of all intermediate states to take into
account the Coulomb repulsion [20]. The CDW transition
temperature at half filling becomes

TcDw(U

TcDw(())
1 ( 5)n1+

I —Uc/IUI „,(1+ 5')(2+ 5'). . (n + 5')
(—5)"

,~i (1+ S)(2+ 5) . (n+ S)
(12)

to second order in ~U), with 5:= ~U(/0, and 5':= 5—
Uc/A. This analysis has been extended to fourth order
and is plotted with the solid line in Fig. 3.

In conclusion, we have found that the conventional
wisdom for how Coulomb repulsion affects the electron-
phonon interaction is flawed in assuming the SC transition
temperature is more robust than the CDW transition
temperature, but is resolved by detailed analysis of
the weak-coupling theory. The conventional wisdom is
restored away from half filling since it predicts that the
Coulomb repulsion moves the CDW-SC phase boundary
toward half filling. The conventional wisdom is also
restored as U~ increases since the pseudopotential effect
becomes active. What happens to the phase diagram
for Uc ) ~U~? We conjecture that the CDW phase is
taken over by the SDW phase at half filling, but do not
know whether or not SC phases can remain stable away
from half filling (due to the pseudopotential effect) or if
paramagnetism prevails.
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