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We study an electron that interacts with phonons or other linear or nonlinear excitations as it
resonantly tunnels. The method we use is based on mapping a many-body problem in a large
variational space exactly onto a one-body problem. The method is conceptually simpler than previous
Green's function approaches, and allows the essentially exact numerical solution of much more general
problems. We solve tunneling problems with transverse channels, multiple sites coupled to phonons,
and multiple phonon degrees of freedom and excitations.

PACS numbers: 73.40.Gk, 71.38.+i, 73.50.Bk, 73.50.I q

We consider a single electron tunneling through a reso-
nant tunneling diode or a quantum dot, in the presence of
interactions with phonons or other excitations. This inter-
action leads to phonon assisted resonant tunneling [1],and
affects the peak-to-valley current ratio, which is important
in device applications. Most previous treatments of this
problem use a Green's function approach, often involving
the Keldysh formalism [2—9]. An exact solution was ob-
tained only for the special case of a single site coupled to
a single phonon mode in 1D [3—6]. Experimentally im-
portant transverse degrees of freedom were treated only to
leading order in perturbation theory [7].

The approach we use is to map the many-body problem
in a possibly large variational space exactly onto a one-
body problem. The Schrodinger equation, for the most
part in real space, is then solved for the one-body
problem. In our view, this is a conceptually simpler
approach. It also prodUces explicit solutions for broad
classes of problems that have not been solved before.
The solution is essentially exact, in that the size of the
variational space can be systematically increased until the
answer converges. This approach need not make explicit
use of Green's functions. (If desired, the Green's function
can be recovered from the wave function. ) Other inelastic
tunneling problems can be solved by the same method.

One can solve essentially any problem where a single
electron tunnels, and where many-body interactions are
1imited to a finite region of space. The electron-phonon
coupling may be nonzero on many distinct sites, includ-
ing several sites in the quantum well, sites in the bar-
rier, and sites in the leads near the barrier. The electron
may couple diagonally or off-diagonally to many types of
phonons, and multiple quanta can be excited in the same
or different modes. The electron-phonon coupling may
be nonlinear, and the phonons may have nonlinear interac-
tions among themselves. The electron can have transverse
degrees of freedom. Arbitrary one-body interactions, in-
cluding barriers and disorder, can also be included. The
electron can interact in an arbitrary way, including spin-
Aip scattering, with a group of interacting "captive" elec-

trons in the tunneling region, so long as the captive elec-
trons cannot escape into the leads. The method can also be
used at nonzero temperature. In practice, the method may
make significant demands on computer resources when
more than about 10000 inelastic channels are included.

We consider the Hamiltonian

H He] + Hph + H ] —ph

H, )
= ejc~ c~ t~ t, (c~ ct, + H.c.),

j,k

(2)

(4)

Hph ~m m (3)

Hel-ph ~j,mcj cj(am + am) .t

j,m

The potential ej on site j can describe a tunnel barrier,
disorder, or a bias voltage. The hopping amplitude t~ k

can vary from site to site. Aj is the (diagonal) coupling
of an electron on site j to an optical or acoustic phonon
mode m. A site can represent a single atomic Wannier
orbital or a larger region of space [10].

The method works for complicated barrier structures
and interactions described by the above Hamiltonian, and
for more general Hamiltonians. To illustrate the method
in a simple context, however, we first consider the case
with a single phonon mode that couples only to the
electron density on site 0. The many-body problem is
first restricted to a variational subspace. For illustrative
purposes, only states containing 0, 1, or 2 phonon quanta
are retained in the example. (A workstation could easily
handle thousands of states. ) The many-body scattering
problem in the variational subspace is then mapped
exactly onto a one-body problem with many channels,
as shown in Fig. 1(a) and explained in the caption. At
zero temperature, an electron incident from the left is an
incoming plane wave on the lower left lead. It has an
amplitude to exit on any of the six leads, corresponding to
elastic and inelastic backscattering and transmission.

We seek the solution of the Schrodinger equation
EP, = g„H, kit, on the tight-binding lattice of Fig. 1(a)
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FIG. l. (a) Each dot represents a basis state
~ j, n) in the

many-body Hilbert space. The rows of dots are the sites
j = —3, . . . , 3 with n = 0, 1, or 2 phonon quanta. The bonds
represent nonzero off-diagonal matrix elements in the Hamil-
tonian. The horizontal bonds are the hopping amplitudes t, q.
The vertical bonds represent the electron-phonon interaction,
with amplitudes —A on the lower and —A ~2 on the upper
vertical bond. The dots can also be interpreted as Wannier or-
bitals in an equivalent one-body tight-binding model. (b) The
system that results after pruning all but the incoming (lower
left) lead. Sites with complex diagonal energies e, are shaded
gray. (c) The pruned version of the problem where an elec-
tron at site 0 couples to two distinct phonon modes. In the
3 X 3 grid of gray dots, the vertical direction is the number
of quanta n] = 0, 1, 2 of type 1 phonons, and the direction into
the page is the number of quanta n2 of type 2 phonons. Before
pruning, there was one right and one left lead attached to each
gray dot. (d) A system with a single phonon mode, diagonal
electron-phonon coupling of the type in Eq. (4) on site 0, and
off-diagonal electron-phonon coupling of the type in Eq. (5) be-
tween site 0 and sites ~1. The pruned version is shown.

with the known eigenvalue F. = 2t cos(ko) +—e, where
t and e are the hopping amplitude and diagonal energy of
the left lead, and ko is the incoming wave vector. (The
term "lead" refers to the translation invariant part of the
system. ) The boundary conditions are that an incoming
wave is allowed on only one lead. The scattering problem
is straightforward to solve. One method is to "prune" any
lead that has only an outgoing wave. This exact procedure
removes the lead from the problem, while changing the
site energy e~ on the last retained site to a value that is in

general complex and changes with E. For example, the
Schrodinger equation on site 0 is F.go = ht + epPp-
rp ~ P~, where h& includes the off-diagonal matrix elements
from site 0 to sites other than 1. To prune the lower
right lead in Fig. 1(a), note that there is a unique outgoing
wave of energy F. in the lead, p&

= A exp(ik~ j). [If there
are no propagating modes, choose instead the decaying
mode QJ

= A exp( —
q~ j).] Backpropagate this solution

(through tunnel barriers if necessary) to obtain Po and P~,
using the Schrodinger equation on each site j to obtain

~ as a function of P~ and P, +~. The new Schrodinger
equation on site 0, with all the sites in the lead removed,
is now Ego = h~ + eoPo, where eo = eo —ato ~, and
a —= P~/Po is generally complex. The leads to be pruned
in Fig. 1(a) are marked with vertical lines. The system to
be solved after pruning is shown in Fig. 1(b).

The problem in Fig. 1(b) is so simple that it is best
solved by a recursive trick, which does not work in
general. To motivate the general solution, consider the
same problem, but where the electron at site 0 interacts
with two distinct phonon modes of different frequencies.
Again for illustrative purposes, choose a variational space
that allows up to two phonon quanta in either mode, for a
total of 3 X 3 = 9 phonon states [see Fig. 1(c)].

The pruned problem is not solved as a standard
eigensystem, since the eigenvalue E is known in advance.
Considering the amplitude Po to be known, the prolem
is then to solve a system of (complex) linear equations
of the form Ax = b, where x and b are vectors, with
b proportional to Po. For this toy problem A is an
8 X 8 matrix. Once the system Ax = b is solved,
the Schrodinger equation on sites 0, —1, etc. is used
to determine the wave function on the first two sites
of the left lead, and thus the coefficients a~ and a2
in pj = a~ exp(ikoj) + a2exp( —ikoj) The. current 1
leaving through the pruned leads, corresponding to elastic
or inelastic transmission or backscattering in particular
channels, is obtained using Jj q

= 2Im(P&tf, ~gj). The
formula is applied for a retained site j and a neighboring
pruned site k. Current is conserved exactly, globally, and
at each vertex. This equation can be used to calculate
ordinary current or a generalized current between two
many-body states [11].

Another form of electron-phonon coupling modulates
the hopping matrix element t rather than the on-site energy
E,

H 1-ph pj k &J &g(a + ) + H.c.
j,k, m

This off-diagonal coupling represents the fact that when
an atom is displaced to the right, the hopping amplitude
t to the atom on its right increases, because it is closer.
A system with both types of electron-phonon coupling,
which can be solved by the same method, is shown in
Fig. 1(d).

Figures 2—4 show essentially exact results for problems
that to our knowledge have not been previously solved.
Figure 2 plots transmission for more than one site coupled
to a single phonon mode, and considers off-diagonal
electron-phonon coupling. Figure 3 has coupling to many
distinct phonon modes of different frequencies [12].
Finally, Fig. 4 considers transverse degrees of freedom
with electron recoil, which was previously treated only
to leading order in perturbation theory [7].

As a simple test case, Fig. 2 shows transmission
through a quantum dot where a single phonon mode cou-
ples to an electron on a site 0 with electron-phonon cou-
pling strength A. Hopping matrix elements are t~ I

= to
between site 0 and sites ~1 and t~ I

= t for other nearest
neighbors. We model the weak coupling through a tunnel
barrier by a reduced to in this paper, although we could
have just as easily used sites with increased ej. The same
phonon mode also rnodulates the hopping matrix ele-
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phonon quanta distributed in any way among the ten
modes. Using subroutines for large sparse systems [14],
the system with Nph = 4 consisting of N, t

= 1000 states
(2000 channels, including transmission and reliection) re-
quires 20 s of CPU time per energy point on a Spare 10
workstation. Each frequency point requires the solution
of a N, t && N„sparse system of complex linear equa-
tions. The inset of Fig. 3 displays an enlarged portion of
the transmission function in the region of predominantly
one phonon contribution. The weak electron-phonon cou-
pling A = 0.5 is in the experimentally relevent regime,
where the single phonon peaks dominate those due to mul-
tiphonons. Even so, it is clear that one does not get an
accurate description of inelastic tunneling in a variational
space containing only single phonon excitations, and that

Nph = 3 is required to achieve reasonable convergence.
It is straightforward to include transverse degrees of

freedom, for example, to model the case where the tun-
nel barrier is an extended, perhaps planar structure. We
investigated a model containing Ny parallel leads with pe-
riodic boundary conditions in the (transverse) y direction.
The Hamiltonian, written with real-space indices j, I in the
x direction and momentum space indices k, q in the y di-
rection is
H« = g(el —

2ty~ cosk)cl t, cj k
— tj t(cj kct t, + H.c.)t t

j,k j,l,k

+ P tot, akat, — A/ Nz g cpt, cpt, +q(a + a q),

(6)
where the on-site energies are e) = [et, ep, e„] for [j ~
0, j = 0,j ) 0], respectively. Hopping matrix elements
are tj ~

= t, for nearest neighbor j, I 4 0, and tj ~
= t 0

when j = 0 or l = 0. Similarly ty~
= ty for j 4 0 and

ifyj tyo otherwise. Diagonal electron-phonon coupling
is restricted to sites where j = 0. Because of the transla-
tional symmetry in the y direction, the total transverse mo-
mentum k is conserved. The electron momentum changes
only as a consequence of the electron-phonon interaction.

Figure 4 shows the transmission for Ny = 6 parallel
leads. Figure 4 uses a variational space with up to Nph =
5 phonon quanta in any phonon modes, which gives sat-
isfactory accuracy in the whole frequency and transverse
momentum range. For simplicity we use a dispersionless
phonon spectrum; however, generalization to momentum-
dependent phonon frequencies and electron-phonon cou-
pling is straightforward. At small transverse momentum
k = 0 and n/3, a strong nearly elastic resonance is located
just below the noninteracting resonance at to(k) = Ep

2tyocosk. Inelastic side peaks at higher co correspond
to phonon creation, usually accompanied by a change in
the electron momentum. For large transverse momentum
k = 2qr/3 or qr, resonant states where the electron creates
a phonon and recoils to lower momentum can have a lower
energy than the state with no phonons. This results in side
peaks at energies below the weakened central peak.

Generalizations: Finite temperature problems can be
solved by having the incoming electron arrive on different

leads in Fig. 1(a) with the appropriate Boltzmann weights.
It should now be possible to model more realistic coupled
electron-phonon systems, to address such questions as
why the inelastic peak is observed experimentally at the
barrier phonon frequency rather than that of the well
[1,15]. It would be interesting to study the stronger
electron-phonon coupling that arises when electrons are
localized on impurities, or from phonon modes caused
by crystal defects. It should also be possible to model
more complicated band structures that include several
Wannier functions per unit cell, and amorphous barriers
if a suitable tight-binding description is known.
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