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Theory of Spin Beatings in the Faraday Rotation of Semiconductors
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We show from first principles that the coherent excitation of the Zeeman-split exciton spin states,
leading to quantum beatings, is entirely due to correlation between two excitons of opposite spin, and

is, thus, beyond the phase-space filling and the mean-field effects between excitons. This explains the
ultrafast terahertz oscillations in the delay time between the pump and probe pulses in the presence of
a magnetic field observed by the recent time-integrated measurements of the optically induced Faraday
rotation in diluted magnetic semiconductor quantum wells.

PACS numbers: 71.35.+z, 75.50.Pp, 78.20.Ls, 78.47.+p

Ultrafast nonlinear spectroscopy experiments have led
to exciting new studies of optical coherence in semicon-
ductors. From the observed coherent polarization mixing,
it becomes possible to study the exciton-exciton interac-
tion [1—3]. In this paper, we study a different problem
of coherence of the spin-split states in a dilute magnetic
semiconductor [4] and the role of exciton-exciton corre-
lation in polarization mixing with the twin purposes of
gaining a deeper understanding of coherence in semicon-
ductors and studying the carrier spin dynamics in a mag-
netic semiconductor. We confine our attention to the low
magnetic field case of Zeeman splitting as opposed to the
high-field Landau levels [5,6].

Recent measurements of spin dynamics using femtosec-
ond resolved magneto-optical techniques reveal coherent
ultrafast oscillations in the Faraday rotation of the trans-
mitted polarization [4]. These oscillations decay on a time
scale of the phase-coherence lifetime long before spin
scattering of the electrons becomes important. The mea-
surements were carried out with magnetic barrier coupled
[Zni, Cd(Mn), Se] double quantum wells (MCDQW),
which leads to a large Zeeman splitting of the degenerate
spin states due to an enhancement of the effective g factor
in the coupling with magnetic Mn++ ions in the barrier
[7). The oscillation frequency of the signal in the pump
and probe (PP) geometry with respect to the pulse delay
corresponds to the splitting of the symmetrical heavy-hole
exciton transitions in the double well and can be tuned
with the strength of the magnetic field.

We will show that the oscillatory Faraday rotation
is not mere quantum beatings of the two opposite-spin
excitons but results from a coherent excitation of the two
excitons through their correlation. Thus this phenomenon
does not occur in the mean-field approximation. In the
larger context of biexciton effects on coherence transfer
through mixed polarizations, this theoretical explanation
of a coherent oscillation demonstrates the importance of
the exciton-exciton correlation without necessarily the
binding of the two excitons. There is a sharp distinction
between the quantum beats in Faraday rotation under
study here and the luminescence interference of the two
exciton spin states [8]. The former involves the final state

of a single exciton carrying the spin coherence, whereas
the latter involves radiations from two spin states.

We consider a semiconductor quantum-well model with
only heavy-hole excitons. We neglect the light-hole
excitons. The sp-d exchange interaction of the electron
spin with the magnetic ions in the barrier is treated in
a mean-field approximation [7]. The Zeeman splitting
is then tunable due to the magnetic field controlled
magnetization. In the Faraday geometry, the propagation
of the pump and probe pulses is along the growth axis
which coincides with the applied external magnetic field.
The rotation of the polarization plane of the linearly
polarized probe pulse across the sample thickness is
calculated in terms of the change of the optical constant
to second order in the pump pulse with circular or plane
polarization. The third-order polarizability needed (to first
order in the probe field and second order in the pump
field) is calculated using a recently developed theory [9].
The equation of motion for the contribution of the exciton
at level n and spin o. to the third-order polarizability
has the natural frequency of the exciton, ~, , and a
dephasing rate I . It is driven by (1) the phase-space
filling term [10,11],arising from the Pauli exclusion of the
constituents of two excitons, (2) the mean-field (Lorentz
field and self-energy) term [10] due to other excitons, and

(3) the exciton-exciton correlation via a time-dependent
/ / . // //

(force-force) correlation function [9] F„„' ' (t). - —

The contributions of the three source terms are cal-
culated for a two-dimensional Hubbard model with a
conduction band and a heavy-hole band and long-range
Coulomb interaction between the electrons in both bands.
In the low field, Zeeman limit, the magnetic field comes
in only through the large g factor. In the exciton-exciton
correlation function, the interactions among the four parti-
cles (two electrons and two holes) are treated on an equal
basis and the ensuing many-body effects are computed
with controlled numerical precision for a finite system size
of the square lattice with 36—100 sites by enumerating all
possible many-body excited states. The numbers of sites
used exhibit already the convergent short-time behavior of
the infinite system. We have also neglected the contribu-
tion of higher energy excitonic bound and unbound states
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as a source term for the pump-induced polarizability. No
further approximation, such as a decoupling scheme for
the correlation function, is necessary.

Before going into details, we summarize here the key
results of our calculation. The Faraday rotation of the
linearly polarized probe pulse decays smoothly (with no
oscillatory behavior) as a function of the delay time
from the pump pulse which is circularly polarized. The
optical transitions from the total angular momentum ~3/2
states in the heavy-hole band to the ~1/2 spin states
in the conduction band are excited, respectively, by the
o. = ~1 circularly polarized light. Thus a circularly
polarized pump pulse excites only excitons of only one
spin direction, whose exponential decay in pump-probe
delay time creates a smooth decrease of the change in
optical constant responsible for the Faraday rotation. A
linearly polarized pump pulse can be resolved into a
left-handed and a right-handed circularly polarized pulse.
In the two source terms of the third-order polarizability
due to phase-space filling and to the mean-field effect,
the net contribution to the Faraday rotation of the probe
pulse is essentially zero, because each circularly polarized
component of the pump pulse excites only excitons
of the corresponding spin, producing Faraday rotation
of opposite sign to that due to the other component.
The third source term, the exciton-exciton correlation
term, yields the only nonzero Faraday rotation, which,
in addition, oscillates with the frequency of the Zeeman
splitting of the exciton level as a function of the delay
time. This beating arises from the correlation of the two
excitons of opposite spins coherently excited by the two
components of the pump pulse.

Let the Faraday rotation of a linearly polarized probe
pulse plane wave propagating through the sample thick-
ness L be denoted by the angle of rotation OF of the
polarization plane. In the experimental setup [4,12], the
transmitted light from the sample is split into two linearly
orthogonal polarizations in the probe direction and rotated
by an angle Oo —rt/4, and the difference intensity is
measured in an optical bridge. Without the pump beam,

the bridge is balanced by adjusting 0'o, so that the two
linear contributions cancel. Normalizing the output gives
the following result for the Faraday rotation 8F(rd);

Re o v„
2lp

oF(rd) =

x (B„„,), [f~ k, (t, O)]*dt, (1)

in terms of only the pump-induced corrections for the
exciton polarizability (B„k,), at time t, where B is the
exciton annihilation operator at level n and spin o. The
propagation of the light pulse in the ki direction for the
cr-circularly polarized plane wave is represented by the
Rabi frequency A k, = 2(p, E k, ), where p, is the
interband electric dipole matrix element. Equation (1)
includes an average of the linear phase over the wave
packet with intensity Io = f IA~ k(t, O)l dt and depends
on the delay ~d = tp Q tp p between the pump and
the probe pulse maxima:

tr no= ,-Ipol. (2)
U nI c

with nI being the linear index of refraction of the
semiconductor, the central frequency of the light pulse at
cuz, o.„ the exciton wave function at zero relative dis-
tance, and U the system volume. In the quasiresonant
approximation [13], i.e. , for a central frequency of the
external laser field au~ near the fundamental 1s-exciton
resonances with energies ~&, =

& and spectrally limited
pulses, to a good approximation, only first-order contri-
butions arising from these resonances need to be taken
into account as source terms for the third-order polariz-
ability. In the rotating frame, the magnetic field induced
Zeeman splitting is given by ~ = —crcuti/2 (roti ) 0).
From here on, we drop the exciton indices.

For a simple, analytic discussion, we assume short
symmetric, nonoverlapping pulses with width r„« 1/I
and a delay 7.d ) 7.~. The nonlinear polarizability in

the probe direction can then be written with A
j II k, dt as follows:

B k, (t, rd) =—g n,* (B„k,(7.d))~

0,0 l, CJ2

(')(rd)e' 2 -'l de z 'd II (g )" ,'(t, t')A k, (t') dt'. (3)

The polarization-dependent third-order susceptibility

, '(t, t') includes the three source terms discussed
above.

We have calculated the specific rotatory power
OF(rd)/L for the various pump-induced source terms
separately. The pump field is chosen to be either
circularly polarized or linearly polarized in the x (or y)
direction. The probe field is fixed with linear x polariza-
tion. The central frequency of the light pulses is centered

at the zero-field degenerate exciton resonance. The
contributions from the three source terms are as follows.

(i) Phase space filling (P-SF).—The PSF contribution
depends only on the density of the induced exciton
population. For a sufficiently short test pulse with tp I ((
1 we find

l

,o&, ';is, '

n, n'

x xr;, (t —t')~, ~. , ,6, , (4)
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n/, o', n",o"
with the coefficient [13] C„- '-.„' ' arising from the Pauli
exclusion of the constituents of two excitons scatter-

/ / // //ing from states (n, o", n, o.) into states (n, o. , n, o. ).
Here the linear susceptibility is given by X/.„(r)=
(i/2)O(r)e '( " ' l'. For a spectrally limited test pulse
at the 1s-exciton resonances the summation over the exci-
ton contributions can be limited to the relevant terms n =
1s. The result is the well-known bleaching of the exciton
resonance due to Pauli blocking. As RexL. ~, (r) = 0 for
~z = 0 and symmetrical pulses, no zero-field Faraday ro-
tation is observed. Because of the symmetry of the linear
susceptibility RexL. &, (r) —o, the total Faraday signal
is —g A k, (A k, )', which is independent of the po-
larization configuration of the pump field.

(ii) Mean field exciton excit-on interaction (MF) —The.
mean-field term [9] is given by

/n, o;1s,o
X' ' '(t t) = —

&
n. , n. , p. , ';i, ,

'

n, n'
—i(~„—iI )t i(con/ -ir)t'

~o,o'~o, o l o,o2e
t —2I t t //

/ / . // //

with the coefficient [13] p„- '-.„' ' being the mean-field
term due to other excitons. Again, focusing on the
1s response only, for a circularly polarized pump field
the mean-field contribution results in a symmetrical
signal, which is finite even at zero applied magnetic
field (cf. Fig. 1). For linearly polarized excitation,
the net signal is zero due to cancellation in the total
Faraday signal —g o.A~ k, (A~ k, )*. Therefore a
mean-field description fails to describe the experimen-
tal results [4] in the coherent regime of the Faraday
rotation. In the low spin-split limit, we expect a ratio
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FIG. l. Specific rotatory power vs delay between pump and
probe pulse for different pump-pulse polarizations and ~q =
0.2~, . This figure contains the MF contribution and the PSF
contribution only.

of the above two mean-field contributions to be ap-

proximately ~HF /OF ~

= C, /4p && 1, with the
(PSF) (MF)

2 1s,o;1s,o.
microscopic parameters p = (~ni, ~~ /2)p~,''~.'~', ' and

.1C:= g„ni, n„Ci,' '. i,
' . The relative weight can

be seen in Fig. 1, where we have plotted the rotatory
power with respect to the delay between the pulses.

(iii) Exciton exciton c-orrelation (XX):parallel spins
The exact parallel-spin exciton-exciton contribution re-
quires the knowledge of the corresponding two-exciton
correlation function [9]. However, for parallel-spin cor-
relation, no polarization mixing can be observed. We can
derive an analytical expression for the nonlinear suscepti-

!
bility for arbitrary polarization couplings

—I'(t —t')'(t, t ) = ——n), ~, n„, n„n„e
n, n /

t//

l ( On o t ~n/, o/t )
2 (6)

For the 1s contribution, the two-exciton correlation func-
tion F '(r)/i=0 is, in general, complex [9], and the fast

2

time dependence of the correlation function requires a di-
rect numerical calculation of' F(r) on the time scale of
the pulse duration t„. In our model calculation, the paral-
lel spin contributions are displayed in Fig. 2. The effect
of parallel-spin correlation is basically a correction to the
mean-field contribution with symmetry relations easily de-
rived from Eq. (6) and will be discussed elsewhere.

(iv) Exciton exciton correla-tion (XX):opposite spins
The most interesting correlation contribution arises if the
interaction of electrons with opposite spins is taken into
account. From Eqs. (3) and (6) we have two different spin
dependent polarization-mixing contributions to the Fara-
day rotation. A contribution to the susceptibility Eq. (6)
results from the polarization-mixing interaction depending

on the density of the opposite spin type exciton popula-
tion (o = o') and gives a result similar to the parallel-
spin XX terms; i.e., a partial cancellation occurs for lin-
early polarized excitation. However, the contribution with
(/r = —o') leads to a coupling of excitons with oppo-
site total spins, and the Faraday rotation signal of Eq. (1)
shown in Fig. 3 is uniquely modulated by the splitting
frequency ~z. The modulations are absent for circu-
larly polarized pump fields. A ~ phase shift for orthog-
onal linearly polarized fields is observed as 0, k, A
changes sign. The striking symmetry of the Faraday ro-
tation signal —sin(a///rd) is due a partial cancellation of
—cos(~0Brd) contributions in Eq. (6). This can be seen
by neglecting the residual field dependence of the suscep-
tibility in Eq. (6) in the limit cu//tz « 1, i.e. , for beating
periods much larger than the pulse duration. The cor-
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FIG. 2. Specific rotatory power for the pulse parameters in
Fig. 1 for parallel-spin exciton-exciton correlation (XX) only.
The lack of mirror symmetry is due to the spin dependence of
the correlation effects.

relation, which, in the short-time regime, arises mainly
from unbound two-exciton states, is important for the rela-
tive strength of the signals. Possible bound biexciton
states present in a quantum well have no significant effect
on the short-time domain of the convolution in Eq. (1).
This shows that some important aspects of a microscopic
description of exciton-exciton correlation [9—11,14,15]
cannot be reproduced by a phenomenological few-level
model [3].

Here is a physical picture of the processes which lead
to the observed oscillations in Faraday rotation. The ef-
fective magnetization in the barrier gives rise to a large
Zeeman splitting of the two lowest energy excitonic states
with opposite spins. Only the linearly polarized (as op-
posed to the purely circularly polarized) pump field can
create simultaneously both these two excitons as well
as inducing the spatially homogeneous spin coherence,
—A k, A" k„which oscillates with the Zeeman fre-
quency co~. Conservation of total angular momentum de-
mands that the probe pulse of one circular polarization
will produce in this spin coherence an exciton of the op-
posite spin. Therefore the Coulomb correlation between
the two opposite spin excitons is essential to the produc-
tion of the photon of polarization opposite to that of the
probe. This photon carries the temporal oscillations of the
spin coherence as a phase information which is detected
by the Faraday rotation.

In conclusion, we have presented a first-principles
analysis of the pump-induced Faraday rotation in semi-
conductor quantum wells using a previously developed
calculational scheme [9]. We have demonstrated that a
recently observed spin-beating phenomena for linearly po-
larized pump fields can be explained by coherent polari-
zation mixing in semiconductors, in which the Coulomb
interaction between excitons of opposite spins is essential.
For circularly polarized pump-field excitation, the Fara-

FIG. 3. Specific rotatory power for the pulse parameters in
Fig. 1 due to polarization-mixing exciton-exciton correlation
only. Spin beatings are evident for linearly polarized pump
fields with the frequency of the Zeeman splitting of the exciton
transitions.

day rotation signal is dominated by the mean-held contri-
bution of the excitons.
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