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Momentum-Transfer-Resolved Electron Energy Loss Spectroscopy of BaBio3. Anisotropic
Dispersion of Threshold Excitation and Optically Forbidden Transition
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Momentum-transfer-resolved electron energy loss spectroscopy of the valence band transitions in

BaBi03 has revealed for the first time that dispersion of the excitation at the optical gap (—2 eV) and
an optically forbidden transition at 4.5 eV are all anisotropic along [100] and [110]. The anisotropic
dispersion of the threshold excitation cannot be described by a simple charge density wave picture but
can be explained by a small exciton model proposed in this paper. The optically forbidden transition
is found to agree well with a proposed molecular orbital model, where the transition is assigned as the
excitation from the 0 2po nonbonding states to the empty Bi 6s state.

PACS numbers: 71.25.Jd, 78.20.—e

The electronic structure of oxide superconductors has
been under intense scrutiny in recent years in hope of re-
vealing clues about the mechanism of high-T, . supercon-
ductivity through the understanding of their normal state
electronic structure. Equally important is the electronic
structure of the parent insulating compounds. One such
intriguing insulating compound is Ba Bi 03.

BaBi03 has a monoclinic structure with two slightly
different Bi-0 bond lengths [1,2] and is the parent com-
pound of Ba~ K Bi03 and Ba~ Pb Bi03 oxide su-
perconductors. Similar to the undoped cuprates, BaBi03,
with an odd number of electrons in the valence band, is an
insulator despite the metallic prediction of the band struc-
ture calculations [3]. Owing to the different Bi-0 bond
lengths, a model involving charge density wave (CDW)
instability was proposed to explain the insulating nature
of BaBi03 [4]. The optical spectroscopy investigations
have assigned the observed excitation near 2 eV as a
transition across the CDW gap [5—7]. In photoemission
experiments have, however, the charge disproportion is
found to be small [g].

We have employed momentum-transfer- (q-) resolved
electron energy loss spectroscopy (EELS) to probe the
momentum dispersion of the valence band excitations
in BaBi03. For the first time, we report an optically
forbidden transition ( at -4 eV) and effective mass of
the optical gap (-2 eV), both of which have anisotropic
property. In this paper, a molecular orbital model is
proposed to interpret the forbidden transition and a good
agreement is found between the experimental results and

theoretical calculation. In addition, we also found that the
anisotropic properties of the dispersion of the threshold
excitation do not agree with a simple CDW picture but
agree well with a small exciton model proposed here.

Inelastic electron scattering with q control has been ef-
fectively utilized to obtain information about the symme-
try of electronic states and their dispersion in many solids
[9—11]. Specifically, low loss EELS can reveal dynamic
information about excitations, such as its effective mass
through the relation

6
E(q) = Ep + q~,

2m
where E is the center of the excitation energy, q is the
momentum transfer, and I"' is the effective mass. In
addition, the presence of optically forbidden transitions
can also be identified at higher q values. According to
the Born approximation, the differential cross section of
inelastic scattering can be written as

2

dEd I),
—q 'g I(+f1 exP(tq . «)I+P)l'

X 6(Ef —EP —E),
where 'Ij'0 and II'y are the initial-and final-state wave
functions with energies as Eo and Ey, respectively, and

q is the momentum transfer. If r, is the effective radius
of the excitation, for q ( 1/r„one can write

exp(iq . r) = 1 + (iq r) + (iq r) /2 +
For small q, the second term dominates the integral, per-
mitting dipole-allowed transitions. For large q, the third

2546 0031-9007/95/75(13)/2546(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 13 PHYSICAL REVIEW LETTERS 25 SEPTEMBER 1995

term, which contains monopole or quadrupole transitions,
increases in strength relative to the dipole transitions [12].

Transmission electron microscopy (TEM) specimens of
BaBi03 were prepared by mechanically polishing and
subsequently ion beam thinning to electron transparency
at liquid nitrogen temperature [13]. Energy loss spectra
were obtained using a cold field emission TEM (Hitachi
HF-2000) equipped with a Gatan 666 parallel detection
electron energy loss spectrometer (PEELS). The peak
width of the unscattered beam is —0.5 eV. The zero
loss peak is removed by fitting it with an asymmetric
Lorentzian function [14]. The error of the peak center (or
highest point) is estimated as AE/~N under the condition
of AE » BE, where AE is the width of the peak, 6E is
the energy step of the measurement, and N is the total
number of count contained in the peak [14,15].

Figures 1(a) and 1(b) show the loss functions (after re-
moval of zero loss function) at different q for BaBi03
along [100] and [110],respectively [16]. As q approaches
zero, a pronounced excitation at 2.5 eV is seen in both
spectra, which corresponds to the 2 eV excitation ob-
served in optical spectroscopy [5—7, 13]. With increas-
ing q, the energy position of the 2.5 eV excitation along
the [100] direction remains almost stationary, whereas the

energy position of the same excitation along the [110]di-
rection disperses towards higher energy. The dispersion
with q of the excitation along [100] and [110]directions
are shown in Fig. 2(a) [17].

In addition to the threshold excitation, another broad
excitation appears at —4.5 eV with increasing q, as can
be seen in Fig. 1. The oscillator strength of this feature
is stronger along [100] than along [110]. A Kramers-
Kronig (KK) analysis of the loss functions indicates
that the 4.5 eV excitation shifts down to 4.2 eV in e2
(imaginary part of the dielectric function), while the
excitation at 2.5 eV in the loss function shifts to 2.1 eV in

By fitting the energy loss spectra with a combination
of a Gaussian peak and a smooth background in the
4.5 eV energy region, the oscillator strengths of the
forbidden transition for different momentum transfers
are obtained and plotted against q in Fig. 2(b), for
both [100] and [110] directions. The linear relationship
between the oscillator strength and q is consistent
with the major characteristic of either a monopole or a
quadrupole transition. This dipole-forbidden transition is
strongly anisotropic, as shown in Fig. 1. The ratio of
the oscillator strength along [100] and [110] is estimated
from the slopes of q plots in Fig. 2(b) and is -3.1 [18].
This excitation is assigned to be a transition from the
nonbonding oxygen 2po orbital of the valence band to
the empty Bi 6s state.

Our choice for the nonbonding O(2p) states is the en-

ergy level which is —2 eV below the Fermi level in ac-
cord with the band structure calculations [3]. This is
roughly consistent with the peak position of the dipole-
forbidden transition (which occurs at -4.2 eV), —2 eV
above the threshold of the dipole-allowed transition.
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FIG. 1. Energy loss spectra for BaBi03 with different mo-
mentum transfer q in [100] and [110] directions. The unit of
the insert number is A

Since the O(2p) nonbonding states do not disperse [3],we
can use a molecular orbital model to construct the symme-
try of the transitions associated with O(2p) nonbonding
states [19]. We consider the linear combinations of the
six O(2po. ) atomic orbitals with eg symmetry around the
Bi ion in BaBi03. The two nonbonding states can be
written as

41 = z(px py p x+ p y)— —

1
(p + py

—2» ~
—p —.—p-y + 2p-. )

&12
where p; (i = ~x, y, or z) is the O(2po. ) wave function
at the i atom position. @& has a d(x —

y ) symme-

try as illustrated in Fig. 3, and Pz has a d(3z —r )
symmetry. Because of the symmetry, these wave func-
tions are orthogonal to the Bi 6s state, and the dipole
transitions from these states to Bi 6s are optically for-
bidden. Since the forbidden transition is between s-like
and d-like states, it is referred as a quadrupole transi-
tion. Furthermore, the amplitude of Pi is large along
[100] and zero along [110]. This leads to a strong
anisotropy of the strength for the quadrupole transition.
To calculate quantitatively, we denote (P, ix2ip, ) = a
and (@,iy ip, ) = P, with P, as the Bi 6s wave func-
tion, and i n i

&
i p i. We obtain the transition matrix
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FIG. 2. (a) The peak position of 2.5 eV vs q along [100] and
[110]. (b) The oscillator strength of 4.5 eV excitation vs q2

along [100] and [110).
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elements along [100] as i(P,. ix I@I)l = (tr P) and

i(@,)xzip2)i2 =
3 (n —p) . The transition matrix el-

ements along [110] are [(p, ((x + y) /2i@I)i = 0 and

i(@,i(x + y) /2ip2)i =
3 (a —p) . The ratio of the

transition strength between [100] and [110] is 4, which
compares favorable with the experimental result of —3.1.
This model also predicts the ratio of the strength for
the forbidden transition between [100] and [111] to be
(31)(4)/ —8, consistent with our experimental observa-
tions that the oscillator strength in [111] is significantly
weaker than the one in [110].

The effect of the nonbonding 02p~ orbital on the
optically forbidden transition is much sma/ler due to a
smaller wave-function overlap between 02p~ and Bi 6s
states. From six 02prr atomic states (two for each
0 atom) with one Bi ion, we can construct three d-
wave molecular orbitals (d„„dy„d„),and three p-wave
molecular orbitals (along x, y, and 2 directions). The p-
wave orbitals are dipole-allowed transitions to the Bi(6s)
state, but the strength is much weaker due to the small
wave-function overlap. This is consistent with the optical
measurements [7,20].

We now discuss the dispersion of the optical gap in
the electron energy loss spectra. As shown in Fig. 2(a),
the peak position is essentially dispersionless along [100],
while it is proportional to q along [110] [21]. In 1977,
Fields, Gibbons, and Schnotterly reported anisotropic
dispersion of an exciton in LiF along [100] and [110]
[22]. However, comparing with the exciton in LiF, the
anisotropy in BaBi 03 is unusually large at a small
momentum transfer. It will be shown that this unusual
dispersion disagrees with a simple CD& model but agrees
well with a small exciton model.

FIG. 3. Illustration of the nonbonding wave function
which has d(x2-y2) symmetry. The amplitude of this wave
function is zero along the [110] direction, which results in the
weaker forbidden transition [110].

First, we examined the dispersion in CDW model. In
this model, a periodic variation in bond length which
doubles the unit cell and results in an insulator state—
opens a band gap [4]. The CDW quasiparticle dispersion

relation is F. (p) = ~ e—z + 52 measured respective to
the chemical potential, where 5 is the CD%' gap, and

ap = —2[cos(p, ) + cos(py) + cos(p, )].
Based on this formula, for the perfect nesting, the nu-
merical calculation of the dielectric function e2(q, cu) in-
dicates that the energy band gap is isotropic and disper-
sionless in terms of momentum transfer q. This calcu-
lated result agrees with the dispersion result along [100]
but disagrees with the result along [110]. If the Fermi
surface is away from the perfect nesting, the calculation
indicates that the band gap is isotropically dispersive as
q, which also disagrees with the anisotropic nature ob-
served in the present experiment. Therefore, it is very
unlikely that the band picture can explain such strong
anisotropy, where the dispersion may be expressed as
tu(q) —tu(0) + C sin(q„) sin(qy). Next, we will propose
a small exciton model to describe the strong anisotropic
dispersion.

We use Rice and Sneddon's local description picture
[23] and consider a small exciton where the quasiparticle
and quasihole are bound to the nearest neighbor in
the Bi cubic lattice due to the Coulombic interaction.
Furthermore, the quasiparticle sits on sublattice A only,
and the quasihole sits on sublattice 8 only. Shown in
Fig. 4 are the two opticaiiy active (with an odd parity)
local excitons in the x-y plane with two wave functions
for quasihole as

holePI = p(px q —x + qy q —y),

hole
2 (Px P xPy + % —y)—

where y; (i = ~x, y, or 2) is the wave function at the
site i. Because of the effective hopping integral t' of
the quasiparticle, the excitons can move between the next
nearest neighbor sites which belong to the same sublattice.
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FIG 4. Two small excitons in the x y plane with a p
symmetry. The exciton consists of a quasiparticle (solid circle)
at sublattice A and a linear combination of four nearest neighbor
quasiholes (hollow circle) state at sublattice B The sig. ns
indicate the relative phases of quasihole. The arrows indicate
the directions of the exciton motion with the strongest oscillator
strength.

Neglecting the kinetic energy, the optical active gap is
given by the energy of the local excitons in Fig. 4. By
including the effective hopping of the quasiparticle and
letting 6 be the angle between q and the x axis, the
excitons dispersion induced by t' can be calculated for
small q as [24]

2t'sin(q ) sin(qy) = t'q sin(26) for Pt,t

2t'sin(q —) sin(qy) = t'q sin—(2t)) for P2.
The oscillator strength of the optical transition is propor-
tional to iI„i, where I„=(GSiq riP„), with iGS) as
the ground state, q as the unit vector of q, and n = 1, 2
representing the two excitons. By invoking the symme-
try, we found that ilti = C[1 + sin(20)) and iI2i
C[1 —sin(20)] with C as a constant. The dispersion in
this model shows a strong anisotropy: dispersionless along
[100] and dispersive along [110]. The oscillator strength
of the model shows that along [110] only the exciton Pi
is optically active, while along [110]only the exciton P2
is optically active. The exciton energy with a stronger os-
cillator strength always shifts towards higher energy. All
these are qualitatively consistent with our experimental re-
sults.

In summary, we have performed q-resolved EELS mea-
surements on the insulating compound BaBi03. The data
have two important features: an anisotropic optically for-
bidden transition at 4.5 eV and the anisotropic disper-
sion of the threshold excitation at 2.5 eV. For the for-
bidden transition, we have proposed a molecular orbital
model and assigned the transition as a quadrupole transi-
tion from d-like molecular orbital of nonbonding 0 2po
states to the Bi 6s state. For the anisotropic dispersion of
the threshold excitation at 2.5 eV, numerical calculations
indicate that a simple tight binding CDW approximation
does not account for this anisotropy. However, we found
that the anisotropic properties can be derived from a small
exciton proposed in the paper.
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