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Monte Carlo Simulation of the Rapid Crystallization of Bismuth-Doped Silicon

Kenneth A. Jackson, ' George H. Gilmer, and Dmitri E. Temkin
'Materials Science and Engineering, University of Arizona, Tucson, Arizona 857I2

AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Central Scientific Rese-arch Institute of Ferrous Metallurgy, Moscow I07005, Russia

(Received 17 January 1995)

In this Letter we report Ising model simulations of the growth of alloys which predict quite different
behavior near and far from equilibrium. Our simulations reproduce the phenomenon which has been
termed "solute trapping,

" where concentrations of solute, which are far in excess of the equilibrium
concentrations, are observed in the crystal after rapid crystallization. This phenomenon plays an
important role in many processes which involve first order phase changes which take place under
conditions far from equilibrium. The underlying physical basis for it has not been understood, but these
Monte Carlo simulations provide a powerful means for investigating it.

PACS numbers: 61.50.Cj, 61.46.+w, 64.60.—i

Rapid cooling is being used increasingly to produce
fine, tailored microstructures, to produce fine dispersions
by rapid quenching of small particles, and to modify the
surface properties and structure of materials by rapid ther-
mal processing or by laser irradiation. In some materials,
the amorphous structure of the liquid is preserved in the
form of a metastable glassy phase [1—3]. In other ma-
terials, equilibrium phases are suppressed, and unstable
or metastable phases, which do not exist otherwise, form
during a rapid quench. In most materials, compositions
outside the equilibrium range can be obtained. Related
nonequilibrium segregation effects such as the "facet ef-
fect" in the Czochralski growth of silicon [4,5] are present
at relatively slow growth rates. There is no sound phys-
ical understanding or theoretical framework for these and
many other nonequilibrium effects associated with first or-
der phase changes which take place far from equilibrium.

The best data available for the formation of phases
which have nonequilibrium compositions have been ob-
tained for the incorporation of dopants into silicon during
very rapid solidification following laser melting of a sur-
face layer [6—14]. These dopants are incorporated into
the crystal at high concentrations which are metastable at
any temperature, and they will precipitate during subse-
quent annealing. The quantitative measure of this effect
is the distribution coefficient, also known as the k value,
which is the ratio of the concentration of dopant in the
solid at the interface to the concentration of dopant in
the liquid at the interface. The k value increases dra-
matically with growth rate in these experiments, from
an equilibrium value of 0.001 to a value approaching 1.
Several models have been proposed to account for the
phenomenon [15—18], and the model which has been
compared most extensively with experiment is due to
Aziz [17—21]. The underlying physical basis for this
model is controversial, but it does provide a distribution
coefficient which can differ significantly from the equi-
librium distribution coefficient, and it has been used to

fit to experimental results using reasonable values for the
diffusion coefficient.

Previous Monte Carlo simulations, based on the Ising
model applied to alloys, have not reproduced these ex-
perimental results [22]. Why this is so has been a mys-
tery, since our present understanding of the atomic scale
processes involved in crystallization is based on the Ising
model, and Monte Carlo simulations [23—26] guided the
development of this understanding, which includes the sur-
face roughening transition and its central role in the equi-
librium properties of surfaces and interfaces, and in the
kinetics of interface motion during crystal growth [27].

The simulations reported here have been done in two
dimensions and are a special version of a two-dimensional
random walk. In order to simulate crystal growth in two
dimensions, the position of the "walker" becomes a line
which represents an interface. In three dimensions, a
surface represents the interface. The crystal is on one side
of this line or surface, and the liquid is on the other. The
probability that the interface jumps backward or forward
at a site depends on how many of its nearest neighbors
are on the crystal side or on the liquid side of the
interface. This lateral coupling tends to keep the interface
planar, and so effectively introduces a surface tension.
The probability of interface jumps in the two directions
can be biased to simulate nonequilibrium melting or
freezing. To model an alloy, special sites are introduced
to represent the alloying element or dopant. There is a
different bias for interface jumps across these sites than
at the normal sites. The simplest case conceptually is
when these special sites are stationary. This corresponds
to diffusionless growth, which is the limiting case for
the diffusion of atoms being slow compared to the rate
at which the interface moves. In this limit, the liquid
and solid both have the same composition since only the
interface moves, not the atoms, and so the k value is
1. The net rate of motion of the interface depends on
an average of the biases for the two types of sites. The
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special sites can also be made to move around in order to
simulate diffusion. In most alloys, diffusion in the liquid
is very rapid compared to diffusion in the solid, and so it
is usual to assume that there is diffusion only in the liquid.
The usual near-equilibrium growth conditions for alloys
are reproduced when the special sites move around rapidly
compared to the rate at which the interface moves. The
"equilibrium" k value in this case depends on the relative
biasing for the two types of sites. When the biasing is
adjusted so that the equilibrium k value is less than 1, the
dopant atoms tend to stay in the liquid and diffuse away
from the interface. But, as pointed out above, the k value
is 1 if the special sites are stationary, independent of the
biasing. There is a transition between these two extremes
which occurs when the jump rate for the special sites is
comparable to the rate at which the interface moves. We
believe this to be the origin of solute trapping behavior,
and it is evident that this effect should be present in this
model as well as in experiment.

Simulations were reported earlier [28,29] using this
model for "diffusionless" transformations for which the k
value is 1 ~ These provided the first clear-cut confirmation
of the theoretically expected behavior for a diffusionless
transformation, that is, that "freezing" or "melting" should
be reversible for temperatures above and below To, the
(composition dependent) temperature at which the free
energy of a solid alloy is equal to the free energy of
a liquid alloy with the same composition. This is a
significant result because the jump rates of the interface
were specified in terms of the chemical potentials of
the atoms, not in terms of the free energies of the
phases. This suggests that the simulations contain the
correct physical model to explain solute trapping. These
simulations also provided the first information about
crystallization kinetics in diffusionless transformation.

The Monte Carlo simulations reported here are in the
transition region where the k value is intermediate be-
tween the equilibrium value and 1, and the diffusion coef-
ficient and the growth temperature in the simulations have
been adjusted to reproduce the experimentally measured
distribution of a dopant in a silicon crystal after rapid re-
crystallization of a surface layer. The transition rates at
the interface for the Monte Carlo scheme used here are
similar to those used previously [22,28,29]. The transi-
tion probability for an atom to leave the crystal to join the
liquid can be written as

Pz = Pq exp
o (1)k,T)

Here P& is a constant, k~ is Boltzmann's constant, and T
is the temperature. The superscript C identifies the atom
as being in the crystal, and the subscript k identifies the
species of the atom. The summation is over the nearest
neighbors of the atom; each nearest neighbor is identified
by a pair of indices j and l, where j is either C (crystal) or
L (liquid), and l identifies the species of the neighboring

IJ
atom. Pk~ is the energy of the bond between one atom
defined by ik and its neighbor defined by jl. Similarly,
the probability of an atom going from liquid to crystal is

( as' (
Pk+ = Pt. exp — exp P —

, (2)
k ) ~ aT)

where ASq is the entropy of fusion for the species k. This
form preserves microscopic reversibility. The simulations
reported here start with both solid atoms and liquid atoms
present in a two-dimensional array with an interface
between them. Diffusion in the liquid is modeled by the
interchange of two adjacent atoms of different species,
with a probability which is chosen so that the average
jump rate I is some multiple (or fraction) of P&. A
temperature is chosen, and the transition probabilities P~
are calculated from Eqs. (1) and (2). Individual atoms
at the interface join or leave the crystal based on these
transition probabilities. A normalized rate of motion of
the interface is then calculated from the net motion of the
interface.

Figure 1 shows typical experimental data for silicon
implanted with bismuth [10]. The as-implanted distribu-
tion of bismuth is shown as the dashed line. The sam-
ple was surface melted with a laser to a depth of about
2 p, m. The interface layer stayed molten for about 2 p, s,
during which time the implanted atoms diffused in the
liquid, spreading out the as-implanted distribution. The
interface then came back toward the surface, pushing the
bismuth atoms ahead of it, resulting in the distribution de-
termined by Rutherford backscattering as shown by the
open circles. An experimental distribution coefficient (k
value) was determined [10] by estimating the amount by
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FIG. 1. The open circles are the experimental data for the
depth distribution of bismuth implanted into silicon after
laser melting of a surface layer. The closed circles are the
depth distribution of bismuth atoms from the Monte Carlo
simulations.

2531



VOLUME 75, NUMBER 13 PHYSICAL REVIEW LETTERS 25 SEPTEMBER 1995

which the implanted bismuth distribution spread out by
diffusion while the surface layer was liquid, then adjust-
ing the k value to fit the final bismuth distribution which
resulted from the passage of the interface. Although the
equilibrium k value for bismuth in silicon is 8 X 10 4,

the data were fitted with a k value of 0.1. This ex-
periment, and many other similar experiments, unequiv-
ocally established that the k value is strongly growth rate
dependent.

Simulations were performed for dilute Si:Bi alloys by
using bond energies, which were calculated from the
thermodynamic properties of the alloy using a regular

solution model for the solid and an ideal solution model
for the liquid, with an equilibrium k value of 8 X 10 ".
The entropy of fusion, which determines the roughness of
the interface at equilibrium, was chosen to stay below the
two-dimensional critical point, and to make the repeatable
step density, which depends on the roughness of the
interface, similar to that for silicon. A repeatable step site
(also known as a kink site) is an interface site which has
half of its nearest neighbor sites occupied by atoms of the
crystal. The same values were used for the CL bonds and
for the LL bonds. The values used in these simulations
are listed here:

z-Bi
m

1688 K 544.5 K 10 10

b, Ss;/kg 5Ss;/kg

8x104

(assisi

4'sisi )/~B

8440 K

(WBiBi O'BiBi)/kB

2722.5 K

CC LL
(Wsi Bi @siBi )/kB

5430.8 K

T ' and T ' are the melting points of silicon and bismuth,
respectively.

A two-dimensional array of 150 X 1500 atoms was
used, which corresponds to a sample that is about 45 nm
wide by 450 nm deep. This depth is about the same
as the total penetration depth of bismuth atoms in the
experiment. Since the as-implanted profile spreads out
due to diffusion in the liquid during the time that a
liquid layer exists, a profile for the distribution of bismuth
atoms at the time when the crystallization front reached
it was established as follows. 63 bismuth atoms were
inserted into a layer 140 nm deep in the crystal, which
corresponds to the total implant concentration and to the
average implant depth. These atoms were then allowed
to diffuse to a half-width of the order of 100 nm,
comparable to the width of the bismuth distribution
in the experiment just before the recrystallization front
reached the deepest bismuth atoms. The same distribution
could have been achieved by letting the atoms diffuse
while the interface penetrated into the crystal and then
returned to the depth of the bismuth atoms, but the
crystallization front does not interact with the bismuth
atoms during this period. The actual rms half-width
of the distribution used was 340 atomic layers. The
closed circles in the figure show the distribution of the
bismuth atoms in the simulations after the passage of the
crystallization front at a temperature of 1400 K, with the
diffusion jump rate 40 times the arrival rate of atoms at a
repeatable step site. The final positions of the atoms were
smoothed by using Gaussian averaging to simulate the
experimental broadening associated with the Rutherford
backscattering depth measurement. The wiggles in the
final distribution results from having a total of only
63 bismuth atoms in the simulation. The simulations
reproduce the experimental result, giving a k value of
0.1 for these growth conditions. Similar agreement has
been obtained for data in Ref [13]. Simulations run at
other temperatures (growth rates) and with various liquid
diffusion coefficients indicate that the k value depends on

both. Similar results have been obtained with simulations
in three dimensions.

In the previous Monte Carlo simulations [22], atoms
arrived randomly at surface sites, as given by Eq. (2),
and departed from surface sites as given by Eq. (1). The
k value was taken as the ratio of the concentration of
dopant in the growing crystal to the concentration of
dopant in the arriving atoms. The arrival and depar-
ture rates from the crystal were identical to those used
here, but there was no liquid phase present. This was be-
lieved to be a valid model since dopant incorporation into
a crystal, including solute trapping, is a process which
takes place at the interface and provides the boundary
condition at the interface for the diffusion field in the
liquid. This implies that the diffusion process in the liq-
uid can be separated from what happens at the interface.
However, in these simulations [22] it was found that the
k value did not increase very much from the equilibrium
value with growth rate. Agreement with experimental
data could be obtained only by introducing surface seg-
regation and stress near the interface. The results pre-
sented here indicate that the essential difference between
the two simulation schemes is the presence of the liquid
phase.

The Ising model Monte Carlo computer simulations
reported here reproduce experimental results on solute
trapping with the only input being equilibrium thermo-
dynamic data, a diffusion coefficient for the atoms in the
liquid phase, and a growth temperature. This model is
actually the simplest possible scheme for simulating al-
loy crystallization, but it exhibits unexpected and quite
complex behavior. We plan to explore this behavior in
order to develop an understanding of the implications
of the simple underlying assumptions. These simula-
tions provide a powerful and flexible means of exploring
the consequences of these simple assumptions for crystal
growth, and it is expected that this will provide significant
new insights into the crystallization of multicomponent
materials.
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