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Long-Lived Structures in Fragile Glass-Forming Liquids
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We present molecular dynamics results for the existence of long-lived clusters near the glass transition
in a two component, two-dimensional Lennard-Jones supercooled liquid. Several properties of this
system are similar to a mean-field glass-forming liquid near the spinodal. This similarity suggests that
the glass "transition" in the supercooled liquid is associated with an incipient thermodynamic instability.
Our results also suggest that single particle properties are not relevant for characterizing the instability,
but are relevant to the kinetic transition that occurs at a lower temperature than the glass transition.

PACS numbers: 64.70.Pf

The characterization of a supercooled liquid near the
glass transition is an active area of research [1]. Out-
standing unsolved problems include the possible existence
of an underlying thermodynamic transition [2], the history
dependence of the glass, and the mechanisms responsible
for the large increase in relaxation times.

The primary focus of this Letter is on our molecular
dynamics (MD) simulations of a two component, two-
dimensional (d = 2) Lennard-Jones (LJ) supercooled liq-
uid. To help the reader understand our interpretation of
the MD data and the questions we pose, we first review
the behavior of a mean-field (MF) model of a structural
glass transition.

We have shown [3] that the MF model has a well-
defined thermodynamic glass transition associated with
a spinodal. The static properties of the glass phase
are dominated by localized structures (clumps). A new
result is that the dynamical properties that depend directly
on the clumps, e.g. , the diffusion coefficient associated
with their center of mass motion, go to zero at the
thermodynamic glass transition. However, the transition
does not affect dynamical quantities that depend on single
particle motion.

In the MF model, particles interact via a repulsive, two-
body potential of the form [4] V(r) = y" @(yr), where
@(x) = 1 if x ~ 1, P(x) = 0 if x ) 1, and r is the
distance between particles. The range of the interaction
is R = y '. In the limit R ~ oo, the static properties
of the uniform fluid are described exactly by MF theory
[5]. For fixed density p, the system has a spinodal
singularity [6] at a temperature T„which is defined by the
condition 1 + ppp(ko) = 0, where p ' = kttT, @(k) is
the Fourier transform of tb (x), and ko is the location of the
minimum of tb (k).

The singularity is well defined only in the MF limit
(R ~ ~). For d = 3 and p = 1.95, the spinodal is at
T, = 0.705 (ktt = 1). Our Monte Carlo (MC) simula-
tions at p = 1.95 with R = 3 show that the measured
static structure function 5(k) has a maximum at k 4 0
that increases rapidly as T is decreased until T = 0.75,

below which the peak ceases to increase as T is lowered.
This behavior is characteristic of a pseudospinodal. As R
increases, the pseudospinodal better approximates a true
singularity and has measurable effects if R is sufficiently
long.

If the system is equilibrated at T ~ T, and quenched to
T ~ T, where the uniform phase is unstable [6], the parti-
cle immediately form clumps with order pR particles in
each clump. The arrangement of the clumps is noncrys-
talline, and their number depends on the quench history
[3,6]. The free energy has been calculated numerically in
the MF limit and has many minima corresponding to differ-
ent numbers of clumps [3,7]. These properties suggest that
the MF model has a metastable glass phase for T ( T, A
new result is that the glassy dynamics of the MF model is
associated with the clumps. In contrast, its single particle
dynamical properties do not show the usual signature of
the approach to a glass. A simple argument [8], based on
the fact that all potential barriers in the MF model are fi-
nite, implies that the self-diffusion coefficient D ) 0 for
all T ) 0. That is, the particles are not localized in the
metastable glass phase. Hence, if the observation time is
sufficiently long, the mean square displacement of the par-
ticles increases without bound.

A similar argument implies that the MF model is ergodic
for all T ) 0 if single particle properties are probed. The
ergodic behavior can be characterized by several fluctu-
ation metrics [9]. The single particle energy fiuctuation
metric A, (t) is given by [9]

N

B,(t) = —P[e;(t) —e(t) ], (1)
i —1

where e(t) = (1/N)g, , e;(t), and e;(t) is the mean
energy of particle i over the time interval t. If the
system is ergodic, A, (t) —1/t for t sufficiently large
[9]. We find that A, (t) exhibits ergodic behavior at T =
0.4, a value of T ( T, . For T ~ 0.15, f),,(t) exhibits
nonergodic behavior during our longest runs, and the
measured D is indistinguishable from zero at T = 0.15.
Given our theoretical prediction that D 4 0 for all T ) 0,
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the observed nonergodic behavior implies only that the
time for a particle to leave a clump is much longer than
our observation time. Neither A, (t) nor D show evidence
of the glass-spinodal transition, and we interpret the change
from ergodic to nonergodic behavior as an apparent kinetic
transition.

How can we reconcile the T dependence of D and
A, (t) with our identification of T, as the spinodal-glass
transition? The answer lies in the dynamical properties
of the clumps. For example, the diffusion coefficient of
the center of mass of the clumps D, is zero for T ( T,
in the MF limit. To understand this behavior, note that
n, the mean number of particles in a clump, diverges
as Rd as R ~ oo. In this limit, the number of clumps
does not change with time, and the mean numbers of
particles exiting and entering a clump are equal. From
the central limit theorem, the relative fluctuations of these
quantities go to zero as R and n ~ oo. We conclude that
D, ( D(~n, and hence D, = 0 in the MF limit. Our
simulations of D, for finite R are consistent with this
prediction, and also indicate that the clumps do not see the
same local environment, i.e., they have different numbers
of nearest-neighbor clumps. This difference in the local
environment persists as R ~ ~ because the clumps do not
diffuse and cannot sample different local environments.
Hence, the system is nonergodic on a clump (mass —R")
scale for T ( T, in the MF limit.

In summary, the clumps are long lived and localized
for T ( T„even though particles move from clump to
clump. The time scale for the motion of the clumps di-
verge in the MF limit, and the spinodal-glass transition is
seen dynamically only on a clump scale; single particle
dynamical properties show no evidence of the underlying
spinodal —metastable glass transition. However, we ob-
serve an apparent kinetic transition that is associated with
the slow diffusion of the particles and the finite duration
of our runs. The temperature of this apparent transition is
less than T, and depends on the observation time.

The well-characterized behavior of the MF model
motivates us to ask if similar behavior occurs with more
realistic interactions, and we consider a two component,
d = 2 system of LJ particles of mass m. We take
the LJ length parameter of the minority component to
be 1.5 times larger than the length parameter o of the
majority component; the values of the energy parameter e
are the same for both. The role of the minority component
is to inhibit nucleation [10]. We choose units such that
lengths are measured in terms of u. , energies in terms of
e, and the time in terms of r = (mo. /e) ' . We cut off
the LJ potential at r = 3o. The MD simulations [11]
are for N = 500 particles with 80% of the total being the
majority component. The simulations are at fixed volume
with the central cell size at each T chosen so that the
pressure P = 70 (p —1). The time step At = 0.005r,
and averages are over a duration ranging from 2000m at
T = 5.5 to 20000~ at T = 2.15. The following results
are for the majority particles only.

The single particle energy and velocity fluctuation met-
rics show ergodic behavior for 2.15 ( T ( 5.5. D(T) is
consistent with the Vogel-Fulcher form, D —e
with To = 1.5 (see Fig. 1). This form implies that the
system loses ergodicity at T —To for our runs. This be-
havior is similar to that of a two component, d = 3 LJ
system [9].

If the LJ system exhibits pseudospinodal effects, we
should find behavior analogous to that observed in the MF
glass model [3] and in Ising models with long, but finite
range interactions [12]. In these systems, S(k) appears
to diverge if its behavior is extrapolated from high T
or small magnetic field, respectively, but the extrapolated
singularity is not observed if measurements are made too
close to the apparent singularity. For the LJ system we
find a diffraction peak in S(k) at k = ko = 7.1. The
height of the peak ~(ko, T) increases by a factor of =1.8
and the width w(ko, T) decreases by a factor of =1.5 as
T is lowered from 5.5 to 2. 15 (see Fig. 1). Because this
range of T is limited, we can fit ~(ko, T) and w(ko, T) by
a variety of functional forms. If we consider the data only
for T ) 3.1, the most consistent fit is ~(ko, T) —(T—
2.5) and w(ko, T) —(T —2.5) . . These fits suggest
that the increase of the first peak of S(k) is infiuenced by
a weak singularity at T = T, = 2.5. Given the limited
range of T, this fit is justified only in the context of our
rigorous results for S(k) in the MF model [3]. If we fit the
data for 2.15 ~ T ( 5.5, we find ~(k, T) —T o and
w(ko, T) —T, and we see no evidence of a spinodal-
like singularity. This behavior is consistent with the
pseudospinodal interpretation; i.e., if measurements are
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FIG. 1. The temperature dependence of ~(ko, T), the height of
the diffraction peak in the static structure function S(k) at k =
ko = 7.1. Note that ~(ko, T) increases by approximately 1.8.
The solid line represents the best fit in the range 3.1 ~ T ~ 5.5
and has the form (T —2.5) "2; the dotted line represents
the best fit in the range 2.15 ~ T ~ 5.5 and has the form
T . The inset shows the T dependence of the self-diffusion
coefficient D. The solid line represents the fit to the Vogel-
Fulcher form e '. Tp = 1.5 if we omit the two lowest
values of T for which the data are limited; and Tp = 1.0 if all
data points are included.
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made too close to the apparent singularity, its effects
vanish.

For T near or below the pseudospinodal the system
should show signs of an instability. We look for long-
lived structures whose constituent particles remain in close
proximity to each other over extended times at sufficiently
low T. Because the LJ potential diverges at small inter-
particle separations, these structures are not identical to the
clumps found in the MF model. A visual examination of
the configurations shows evidence of a partial phase sepa-
ration in which a significant fraction of the majority parti-
cles form clusters of hexagonal-like structures, which be-
come better defined at T is decreased. To characterize
these clusters, we determine the Voronoi structure. For
each particle with six Voronoi neighbors we measure [13]
5; = (I/(8;) ) [(Z; ) —Z;) ], where (4;) is the mean edge
length of the Voronoi hexagon of particle i. If i is in an
ideal crystalline environment, 5; = 0. Such a particle be-
longs to a cluster if its combination of 5 and kinetic energy
is sufficiently low. (The criterion assumes a linear relation,
with a larger 5 implying a more stringent requirement for
the kinetic energy. ) Including the kinetic energy in the
cluster criterion reduces the effect of thermal fIuctuations.
The qualitative properties of the clusters are independent
of the cutoffs over a wide range of values.

The mean cluster lifetime is measured by dividing
the system into boxes and computing the number of
particles that belongs to any cluster in each box. The
idea is to find if the mean number of cluster particles in
each box becomes approximately the same as t » 1. If
n, the number of cluster particles in box o. , is greater
than a threshold value, box n is said to be occupied;
the corresponding nonzero p is used to compute a
time-displaced cluster correlation function G, (t) and a
cluster fluctuation metric II,(t) (The latter . is defined
analogously to the energy fluctuation metric. ) At T =
5.5, the decay of G, (t) to its equilibrium value can be
fitted to an exponential function with a relaxation time
r, = 50'; similarly, A, exhibits ergodic behavior. At
T = 3.1, G, (t) does not reach its equilibrium value for
t ( 5000m, and A, (t) exhibits nonergodic behavior; i.e. ,

z, is much longer than our runs. At T = 3.1, D ) 0 and
the system appears ergodic if single particle properties
are probed. This qualitatively different behavior of the
clusters and the particles is analogous to the behavior of
the clumps and the particles in the MF model.

The clusters also exhibit interesting static properties.
Because the width of the peak of S(k) decreases as
T ~ 0, we expect that the mean size of the clusters grows
until they become "frustrated" by the minority component
and the different cluster orientations. Our results for n„
the number of clusters of size s, can be fit by the form
(see Fig. 2)

—3/2 —s/m (T)
S

where m(T) is a parameter that increases as T is lowered
until T = 3.1; below T = 3.1 m(T) does not increase.
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FIG. 2. The number of clusters of size s, n„versus s for
T = 5.5 (filled circles) and T = 2.7 (open squares). The
solid line is a fit at T = 5.5 by the scaling form (2) with
m(T = 5.5) = 4.2; the dashed line is a fit at T = 2.7 to (2)
with m(T = 2.7) = 21. These values for m(T) are consistent
with the mean size (mass) of the clusters that is observed
directly.

The form (2) is robust and independent of the cutoffs
used to determine the clusters. Similar scaling behavior
has been found near the freezing transition in a d = 2 LJ
system using a different cluster criterion [14]. The scaling
behavior of the clusters, in particular the exponent of 3/2,
is similar to the MF behavior found in other systems [15].

As noted, ~„ the cluster lifetime, is longer than
our observation time for T ( 3.1. We assume
e " " ", and find that 2.5 ( T,i

( 2.9; T,i is the
extrapolated temperature at which ~, becomes infinite.
Although our estimates for ~, are only qualitative and
the value of T,i is the least accurate of our parameters,
this value of T,~ is consistent with the value of T, = 2.5
obtained from the extrapolation of the T dependence of
the peak of 5(k).

To summarize our MD results, we find that there is
a range of T for which D ) 0 and 7., is too long to
estimate. (Our longest runs are for 20000', runs that
are relatively long in comparison to most simulations of
glasses. ) This qualitatively different dynamical behavior
of the single particle and cluster properties is analogous to
the behavior of our MF model. From our extrapolations
of the T dependence of the peak of 5(k) and r„we
see evidence of an incipient "transition" at T, = 2.5.
These two results provide indirect evidence for our
identification of T, with an apparent ergodic to nonergodic
transition associated with the dynamics of the clusters
and the presence of a pseudospinodal [16]. That is,
we find evidence of an incipient thermodynamic glass
"transition" at T, = 2.5, a value of T ) To at which the
single particle dynamical properties indicate an ergodic
to nonergodic transition. Our extrapolation of D(T) to
0 at To = 1.5 suggests that To can be interpreted as the
kinetic transition and is distinguishable from the incipient
thermodynamic transition.
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The power-law scaling of n, might be important for
understanding the relaxation processes in glasses on
experimental time scales. Nagel and collaborators [17]
have fitted their measured dielectric susceptibility to a
single scaling curve over 13 decades of frequency for
a wide range of T and for many glass formers. Their
results together with our simulation and theoretical results
suggest that there might be a hierarchy of time and length
scales and hence a hierarchy of clusters, i.e., a geometrical
basis for the observed scaling.

We stress that the effects of the pseudospinodal and
the incipient thermodynamic glass transition will be more
or less apparent depending on the interaction range, the
details of the interaction, and d [13]. We do not expect
to find spinodal-like effects in all supercooled liquids.
In particular, there are MF models, e.g. , the MF limit
of the Gaussian potential [3], which have no spinodal
and hence no thermodynamic glass transition. These
considerations suggest that there is a class of materials
for which the observed glass transition is associated
with a pseudospinodal and an incipient thermodynamic
transition, and other materials for which the observed
glass transition is not associated with such effects. We
do not expect the behavior of the clusters we have found
to be observed in all glass formers.

Based on our MC and theoretical studies of a MF
model and our MD results for a d = 2 LJ system, we
suggest that the latter is in the class of systems whose
behavior can be attributed to an incipient thermodynamic
instability (the pseudospinodal). We emphasize that a true
thermodynamic glass transition does not exist in the LJ
system, even though the pseudospinodal has measurable
effects including increasing length and time scales as the
pseudospinodal is approached. In addition to this glass-
pseudospinodal transition, there is a temperature (for fixed
density) that can be interpreted as a kinetic transition
below which the diffusion coefficient is not measurable
during our observation time.
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