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Emergence of Quenched Phases and Second Order Transitions for Sums
of Multifractal Measures
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It is shown that superpositions of multifractal measures provide an ubiquitous mechanism for
nonanalytic behavior of characteristic thermodynamic quantities. We find first and second order
phase transitions. The latter frequently show up as experimentally observable stopping points in f(n)
curves. Our results are derived analytically for sums of multiplicative and Markovian measures. The
critical exponents of the continuous transition define a new universality class of systems, which include
equivalent Ising models with long-ranged multispin interactions.
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Singular continuous measures have long been consid-
ered as exotic mathematical constructs. Since the success
of nonlinear dynamics [1] and the theory of fractals [2—4]
they became popular as multifractal measures [5], which
characterize strange attractors, fractal aggregates, turbulent
velocity fields, etc. Further, the role of singular continuous
measures and their analysis in terms of multifractals was
emphasized in very diverse fields such as x-ray scatter-
ing from aperiodic crystals [6], random-field Ising models
[7], and, most recently, for problems of anomalous quan-
tum diffusion and quantum chaos [8]. The well-known
formal equivalence of a multifractal analysis to statistical
mechanics implies the existence of phase transitions, to
be understood as nonanalytic behavior of appropriate ther-
modynamic quantities [9]. The purpose of this Letter is
to establish a new, experimentally relevant, and universal
mechanism for second order phase transitions in the ther-
modynamics of multifractals.

We address experiments where for some reason the full
multifractal structure of the object of interest is not acces-
sible, but certain projections can be measured. Examples
are the observation of clouds, images of fractal structures
in the Universe, or, quite general, of fractal structures with
dimensions larger than that of the image. Similar problems
occur if dynamically generated attractors are reconstructed
from time series with too small embedding dimensions.
The implications of such circumstances for a multifractal
analysis constitute an unsolved theoretical problem [10].
A related situation is obtained if one observes the superpo-
sition of a finite or countable infinite number of indepen-
dent multifractals with measure. In scattering problems
and for spectral measures such sums arise if one has inde-
pendent contributions to the spec(rum, e.g. , from localized
regions far apart in coordinate or phase space. Typically,
the support of the singular distributions that add up are
overlapping. Very little is known for this generic case. In
the following we treat the limit of large overlap where the
support of all contributing distributions are identical.

We present our results for three analytically solvable
classes, where in each model class a qualitatively new
feature becomes apparent.

Pw (i ) = P ~(v)po(v)' p i (v)

The scaling behavior of multifractals is captured by
r(q), the growth rate of the Nth level partition func-
tion Ztv(q), i.e., r(q) —= Iim~ (N lnl) ' ln Z~(q)
with Ztv (q) = g &( )Ptv( j)& [3,5, 11]. In the
large N limit and with s =j /N one finds

Ztv(q) —
f& e +1&' ~ ' ~ ~ ds. The entropy term

s(s) = —s ln $ —(1 —s) ln(1 —s) is due to the bino-
mial coefficient and a(s ) —= —lim~ N '

1 nPtv (gN).
By the usual saddle point argument r(q) is obtained as

r(q) = ming($; q)/[Inl],

g(s;q) = qmina, (s) —s(s),

(2a)

(2b)

where in Eq. (2b) one is aware that the largest term in
Eq. (1) dominates in the limit N ~ ~ and that there-
fore the box contents scale with a(g) = min, a, (se) with
a, (s) = —s Inpo(v) —(1 —se)1np~(v). In Fig. I we
plot g(s; q) for the superposition of M = 2 measures
p, (v) and for two parameter sets. One finds a(s) = a2(s)
for s ~ g, = (1 + In[po(2)/po(1)]/In[p~(I)/p~(2)])
and a(s) = a~(s) for s ~ s, [we assume pu(1) ) po(2)].
Therefore there exist exactly three possibilities: Either the

(a) Superpositions ofmultiplicative Cantor measures
The most elementary case is obtained by adding M com-
plete, self-similar, multiplicative measures p, (v) supported
by the same monoscale Cantor set with contraction ra-
tio l ~ 1/2. This means one considers the measure p, =

, rr(v)1J, (v) wit, h weights rr(v) [g, rr(v) = 1]. At
the Nth level of hierarchical construction (binary tree) of
a multiplicative component p, (v) one finds 2~ "boxes" of
length l, where ( ) boxes have a "mass" content equal
to po(v)~p~(v) J. The quantities po(v) and p~(v) =
1 —po(v) are the mass distribution ratios for each step
in this construction and j is the number of digits "zero" in
the binary address of the fractal elements (see, e.g. , [3]).
For the sum p, the mass content of such a box is accord-
ingly given by
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minimum s (q) of g(s; q) is provided by the unique min-

imum of one of the two functions g, (s; q) = qa, (s)—
s(g), v = 1, 2, or it lies at their intersection point s, (ver-
tical line in Fig. 1). Correspondingly, one finds that in
the two former cases r(q) is determined by one of the
contributing measures with the well-known result r(q) =
r„(q) = In[pa(v)~ + pl (v) i]/ Inl, v = 1 or 2, whereas
in the third case a new phase arises with r(q) = ro(q) =
[qa(g, ) —s(s, )]/~ Inl ~. The latter is appropriately called
a quenched phase, since it is characterized by a vanishing
susceptibility: Applying a small "field" h; i.e., adding a
term h$ to g(g; q) does not alter the value of $(q), which
is locked to $, . One always observes a first order transi-
tion between phase 1 and phase 2 at q~„= 1. For cer-
tain parameters [as in Fig. 1(b)] we find, in addition, a
second order phase transition from phase v = 1 or 2 into
the quenched phase 0 as q gets smaller than the negative

1nI P0(1)/P0(2)]critical value qq„d = —In, „& 121& l, lj In[pa(v)/pt(v)]
[v = 1 in Fig. 1(b)].

It is a geometrical relationship between the multifractal
components that accounts for the second order transition
and the existence of the quenched phase. This is best un-

derstood by considering the entropic quantity f(n), the
Legendre transform of r(q) [5], which is also measured
in most experiments. In Fig. 2(a) the f(n) curve corre-
sponding to the case of Fig. 1(b) is shown together with
the curves for the isolated components. As usual the first
order phase transition is detected as a straight line seg-
ment on the bisectrix (dashed) connecting the curves for

the two components [12]. The second order transition is
quite drastically manifest as a stopping point at the in-
tersection of the curves ft(n) and f2(n) corresponding
to the isolating measures p, (1) and p, (2). Accordingly
the f(n) curve stops at n = n „with finite left deriva-
tive [13]. In contrast, for the parameters of Fig. 1(a),
which are chosen to yield the same curves f„(n), the

f, (n) spectrum for the sum p, = vr(1)p, (1) + 7r(2)p, (2)
smoothly continues across the intersection point on the
lower dotted line. For n ( n, „ the spectra for the two
cases are identical. Obviously this difference cannot be
explained merely by form and location of the functions

f, (n) Th.e explanation follows from Fig. 2(b), where
we plotted [for the case of Fig. 1(b)] the scaling ex-
ponents n, ($) = n, (s)/~ Inl~ of the measures p, (v) re-
stricted to the fractal subset S(g) of the support 5, and

f(s) = s(s)/~ inl~, the fractal dimension of this subset
[3]. We see that the superposition is such that the piece-
wise linear function n(g) = min„n„(se) exhibits a max-
imum at the intersection point s, . The picture for the
case without continuous transition [Fig. 1(a)] differs only
in so far as one of the curves n, (g) is replaced .by its
mirror image with respect to the line s = 0.5 resulting in
a monotonous function n(g). From the functions n, ($)
and f(g) the value f(n) for some n in the range of n(se)
is found by taking the preimage g of n and reading off
the corresponding value f(s). If there are two preim-
ages [as in Fig. 2(b)], the value with the larger f(g) has
to be taken [14]. This construction explains the absence
of a continuous transition in the case of Fig. 1(a), and
also why in its presence the identities n „=ro(q) =
rr 1($ ) cr2(s, ) and f(ct ..) = ft (ti ..) = f2(~r ..)
f(g, ) ) 0 are fulfilled. Thus, the nonmonotonicity of
n($) is the reason for the second order phase transi
tion. Consequently, it is found only if one of the func-
tions n, (g) is decreasing while the other is increasing.
For monoscale Cantor measures this is true inside the rec-
tangle [1/2 ~ po(1) ( 1] X [0 ~ po(2) ( 1/2], which
covers half the available, symmetry reduced parameter
space, the triangle 0 ( po(2) ( po(1) ( 1. The mech-

0.5

0. 5 j 0 0.5

FIG. 1. The "free energy functional" g(g; q) for integer q val-
ues between q = 2 (top) and q = —4 (bottom) for the super-
position of two multifractal Cantor measures [(a) po(1) = 0.9,
po(2) = 0.6, (b) pp(1) = 0.6, po(2) = 0.1]. In both cases a
jump of the minimum g(q) of g(s; q) at "inverse temperature"
q = 1 (second curve from top) results in a first order transition.
In (b) a second order transition is observed as g(q) gets locked
in a continuous way to g, (thin vertical line) as q decreases be-
low the critical value q2„d =- —1.955 . . . (lowest three curves).

0. 5
0-'

1 0 0. 5

FIG. 2. (a) f(o.) curves for the superimposed (full line) and
for the separate measures (dotted lines) in the presence of the
continuous transition, and (b) its explanation by the functions
n, (s), v = I, 2 (full lines) and f(g) (dashed). The continuous
transition of Fig. 1(b) appears as a stopping point in the f(o.)
curve.
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stopping point in f(n) becomes possible already for
M = 2. Otherwise the discussion of case (b) holds here
also.

To complete the picture we state our results in
the language of statistical mechanics of Ising mod-
els. The function sM (go, gi) is recognized as the
entropy per spin in the microcanonical ensemble ex-
Pressed in terms of $o = N /N and ski = N++/N,
the number of "spin down" and "spin up" pairs, re-
spectively [17]. Transforming to variables energy and
magnetization e = N ' g, 5;S;+i = 2so + 2/i —1

and m = N ' g; 5; = si —sco, 5; = ~ I, one finds
that a, (go, s i) = [—J(v) g, 5;5;+i —h(v) g; 5;—
E(v)]/N —= H, ((5;))/N The. coupling constants
J(v) and the fields h(v) are for each pure phase v

given by J(v) =
4 In[poo(v) pi i (v)/pot (v)p io(v)] and

h(v) =
z In[pit(v)/poo(v)]. The constant E(v) =

(N/4) In[poo(v)pot(v)pit(v)pio(v)] is equal to F, (q =
1), the thermodynamic free energy of the Ising model
at inverse temperature q = 1 [17]. It guarantees that
for the pure phases ~, (q)~ Inl~ = q[F, (q) —F, (1)]/N
vanishes at q = 1. The Hamiltonian corresponding
to the superimposed Markovian multifractal measures
is thus given by H(tS;)) = min, H, (/5;)). The re-
sults of class (a) are obtained for the special case
poo(v) = Pio(v) = Po(v), Pii(v) = Poi(v) = Pi(v),
corresponding to J(v) = 0, with the identification

s = (1 —$o + $t)/2 = (1 + m)/2. The reduction
to a one-dimensional problem occurs here because
a(so, set) dePends only on the difference sco —$t, im-

plying that $(q) is constrained to move on the parabola
e = m . For the second limiting case h(v) = 0, i.e. ,

poo(v) = p»(v) —= po(v) and pio(v) = poi(v) = pi(v),
a(go, st) is a function of go + s i and $(q) is constrained
to lie onthebisectrix $o = st implying m = 0. Thecon-
strained free energy functional g(so = s /2, s i

= s /2; q)
again turns out to be exactly the function g($; q) of case
(a). Interestingly, for h(v) = 0 the second order transition
exists only if one of the couplings is ferromagnetic, while
the other is antiferromagnetic.

The fact that the Hamiltonians contain long-ranged
multispin interactions is explicitly seen, e.g. , for I =
2, by writing H((5; j) in the form [Ht + H2 —(Hi-
H2)sgn(Hi —Hz)]/2, and by expanding the sgn function
into a power series in the (5;). As a consequence of the
long-ranged couplings a mean field theory leads exactly
to the free energy "functional" g(s; q) treated in (a) as is
easily checked for h(v) = 0 or J(v) = 0. The critical
exponents for the transition into the quenched phase,
however, deviate from the usual mean field values. For
all the examples treated in this paper the specific heat
—qzi-"(q) and the susceptibility jump from a finite value
for q ) q2„d to zero in the quenched phase. This implies
n = y = 0. The order Parameter g(q) —sc, increases
linearly for q ) q2„d implying P = 1. We see that

for this new universality class of models Rushbrooke's
scaling law n + 2P + y = 2 is fulfilled in a trivial
manner.

In conclusion, we have found the most probable ele-
mentary mechanisms for second order phase transitions in
the thermodynamics of multifractals (for alternatives see
[18]). Since superpositions of multifractal measures arise
very naturally, our results appear to be relevant and ob-
servable in many experimental situations. They provide
an alternative explanation for the common difficulty to
measure full f(n) curves. We have restricted our presen-
tation to analytically solvable classes. These, however,
belong to the building blocks of general multifractal mea-
sures [19], and one can therefore expect a broad applica-
bility of our findings.

Stimulating discussion with R. Stoop and F. Wagner
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