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The probability of evaporation induced by rotons at the surface of superHuid helium is calculated
using time dependent density functional theory. We consider excitation energies and incident angles
such that phonons do not take part in the scattering process. We predict sizable evaporation rates, which
originate entirely from quantum effects. Results for the atomic reAectivity and for the probability of
the roton change-mode reAection are also presented.

PACS numbers: 67.40.Db

Quantum evaporation occurs in superfluid He when
a high-energy phonon or roton propagates to the surface
where it annihilates and an atom is ejected in the free
space (see, for example, Ref [1]). This phenomenon is
especially interesting because of the peculiar dispersion
law exhibited by rotons.

Despite the significant experimental [2—8] and theoret-
ical [9—14] efforts made in the last years, the fundamen-
tal mechanisms underlying the phenomenon of quantum
evaporation are not yet understood. The experiments by
Wyatt and co-workers [1,5,6] have revealed that the main
process is a one to one process (one excitation to one
atom). This behavior is confirmed by the separate con-
servation of the energy and of the momentum parallel to
the surface in the evaporation process. Conversely mea-
surements of atom condensation [15,16] point out an im-
portant role of nonlinear processes associated with the
excitation of ripplons. This apparent asymmetry between
evaporation and condensation processes is still unex-
plained (see Ref. [13] for a recent discussion).

The theoretical studies have not yet provided a clear
and consistent picture of quantum evaporation. The rea-
son is that it is very difficult to develop a reliable descrip-
tion of this phenomenon on a microscopic basis. In fact
a good theory should be able to account for several ef-
fects: (i) a correct description of the structure of the free
surface, as well as of the elementary excitations of the
system; (ii) a quantum description of the scattering pro-
cesses involving the elementary excitations at the surface;
and (iii) the inclusion of inelastic channels (multiphonons,
multiripplons).

A useful discussion concerning the role of quantum
effects has been recently made in Refs. [13,14] where
it has been pointed out that, due to the peculiar form
of the maxon-roton dispersion exhibited by superAuid
helium, there are severe constraints on the structure of the
classical orbits associated with the elementary excitations
when they cross the interface. In particular, one finds
that only phonons and rotons above the maxon energy
(about 14 K) can give rise to evaporation. Vice versa,

the theory of classical orbits predicts no evaporation
from rotons with energy smaller than the maxon energy,
because of the occurrence of a barrier at the interface.
The experimental evidence [1,5] for quantum evaporation
induced by rotons even below the maxon energy is
consequently an important proof of the crucial role
played by quantum effects. The quantum states associated
with the above classical orbits (WKB states) have been
also used to carry out a perturbative description of
the scattering process [14]. However, the perturbative
approach is not easily justifiable in this context.

The purpose of this Letter is to provide a first calcula-
tion of the evaporation rates using a many body approach
accounting for both the requirements (i) and (ii) discussed
above.

As in Ref. [17] we work in a slab geometry (liquid
between two parallel surfaces). The computation is done
in a box of size Lb„, containing the slab. The system
is assumed to be translationally invariant in the x, y
direction, while g is orthogonal to the surfaces. The
slab is chosen thick enough (50—70 A) to provide a
quantitatively correct description of the behavior of the
semi-infinite medium. The box size (Lb„„)100 A.) has
been chosen in order to allow a few oscillations of
the atom wave function in the free space. The main
features of the spectrum of the elementary excitations
are shown in Fig. 1 as a function of q (for a more
detailed discussion see Ref. [17]). For a given value of
q one finds excitations propagating at different angles,
i.e., different values of q, . In particular, in the shaded
area one finds rotons with negative and positive group
velocity (R and R+, respectively) with energy larger
than the threshold for atom evaporation (dashed line).
In this work we limit ourselves to this part of the
spectrum where phonons do not take part in the scattering
process because of energy and momentum conservation.
It is worth mentioning that, according to the classical
picture of Ref. [13], atoms traveling at incidence angles
sufficiently large, so that they lie in the shaded area in
Fig. 1, are rejected with unit probability. This behavior
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FIG. 1. Spectrum of elementary excitations. Solid line:
phonon-roton dispersion in bulk liquid; dashed line: threshold
for atom evaporation; dot-dashed line: dispersion of the surface
mode; shaded area: region of roton-atom processes.

is contradicted by the experiments of Ref. [15], which
instead indicate full condensation also in that region [18].

We have calculated the eigenenergies and eigenfunc-
tions of this system in the framework of density functional
theory, as already done in Refs. [17,19]. When applied to
a Bose system this theory describes the fluctuations of the
density p and of the velocity potential @ according to the
expansion

p(r, t) —= p(r, t) e'~~"l

= Po(z) + f(z)e' "' ' + g(z)e' " +"', (1)
where Po(z) = Qpo(z) is fixed by the ground state density
of the system and f(z) and g(z) are real wave functions to
be determined, together with the frequency cu, by solving
self-consistently the equations of motion

(
6 dt dr~ A[/*, P] —P*ih —P = 0 (2)

Bt )
linearized with respect to f and g. The quantity E =
f dr A [P*,P] is the energy functional of the system (de-
pending on p and P) which is assumed to be known. The
same functional provides, through the variational proce-
dure 6(E —p, N) = 0, the ground state profile po(z). In
this work we use the density functional recently proposed
in Ref. [19]. It provides an accurate description of the
equation of state of superAuid helium, as well as of the
density profile at the surface.

The density functional approach is basically a mean
field theory with phenomenological ingredients fixed to
reproduce known properties of the bulk liquid. We refer
to Refs. [17,19] for a detailed discussion of the theory.
Here we stress that Eqs. (1) and (2) have the typical
form of the equations of the random phase approximation

(RPA). In particular they account for both particle-
hole t f(z)] and hole-particle [g(z)] transitions which are
coupled by the equations of motion (2). This coupling
is of crucial importance in order to treat the correlation
effects associated with the propagation of elementary
excitations in an interacting system. The equations of
motion have also a structure formally identical to the
one of the Bogoliubov equations for the dilute Bose
gas and to the one of the Beliaev equations for Bose
superfluids [14,20]. With respect to these theories the
present approach makes use of a finite ranged and
momentum dependent effective interaction, which allows
one to reproduce the phonon-roton dispersion law. The
same theory gives a reliable description of surface modes
(ripplons) at both small and high momenta [17]. In
the vacuum the equations of motion coincide with the
Schrodinger equation for the free atom wave function
f(z), while g(z) vanishes.

One should note that the equations of time dependent
density functional (TDDF) theory correspond to quantum
mechanical equations and consequently account for the
interference and tunneling phenomena which are expected
to play a crucial role in the evaporation process. Of
course, due to linearization, they do not include inelastic
processes associated with multiphonons or multiripplons.
These effects lie beyond the present theory. Despite
the absence of inelastic processes, we think that the
solution of the evaporation problem within linearized
TDDF theory is nevertheless highly instructive.

The solution of Eq. (2) can be determined with high
precision working in the slab geometry discussed above.
The solutions are real and either symmetric or antisym-
metric with respect to the center of the slab. A typical
solution is shown in Fig. 2(a), where we plot the function

f(z), for an excitation at q, = 0.7 A. ' and h~ = 11 K.
The figure shows the existence of atoms traveling out-
side the slab and of elementary excitations inside the
slab. The corresponding function g(z), not shown, has
also an oscillatory behavior inside the slab, while it van-
ishes outside consistently with the fact that the hole-
particle components of the wave function (1) (associated
with correlation effects) are absent in the free atom re-
gion. The wavelength of the atom wave function along
z is easily calculated starting from the energy conser-
vation law Rcu = R q /2m —p, where q2 = qz + q2,
while p, = —7.15 K is the chemical potential of helium
atoms. One finds A, = 2~/q, = 16.4 A in agreement
with the numerical results shown in Fig. 2(a). With these
values of q and q„ the incident angle for the atom is
about 61'.

Because of the values of q and ~ the solution shown
in Fig. 2(a) cannot contain phonon components. This is
best illustrated in Fig. 2(b) where we show the Fourier
transform of the signal inside the slab. The signal reveals
two distinct peaks, one corresponding to a R roton with

q, = 1.43 A ' (q = 1.59 A '), and the other to a R+
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has the opposite regime, where only phonons take part
in the scattering process. The results of our calculations
in this case give very small values for the atom reAection
coefficient, in agreement with experiments.

We are indebted to C. Carraro and A. F. G. Wyatt
for many fruitful discussions. This work was partially
supported by the U.S. Department of Energy Office of
Basic Sciences under Contract No. W-31-109-ENG-38.
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FIG. 3. Ratio of the P+ and P evaporation probabilities
(top) and absolute values of the evaporation and reflection
probabilities (bottom) as a function of energy. Triangles,
circles, and squares correspond to P+, P, and R, respectively.
All values below 11.5 K are calculated at fixed parallel wave
vector q,. = 0.7 A ', the others at q, = 0.8 A

The main conclusions emerging from our results are as
follows: (i) Quantum effects give rise to sizable evapo-
ration rates of rotons in the region of energy and angles
where evaporation is not allowed classically. (ii) R ro-
tons turn out to be less active in the evaporation process
than R+ rotons. (iii) The probability for the roton change-
mode reAection is sizable in the energy interval consid-
ered and decreases with energy. (iv) The atom reflection
coefficient is smaller than 10% for energy greater than
about 11 K, and decreases for higher energies.

The remarkable asymmetry between P+ and P at high
energy is consistent with the fact that approaching the
maxon energy one expects P .- 0. Evaporation from
R+ rotons becomes dominant when the energy increases.
The value of the refiection coefficient below 11 K is still
too large with respect to the experimental data [15], but
nevertheless its sizable decrease from the classical value
R = 1 reveals the very important role played by quantum
effects. The remaining discrepancy with experiments is
likely associated with inelastic processes not accounted
for in the present calculation.

The above results concern the region of large q and
large incident angles, where phonons do not take part
in the process. For normal impact and energy smaller
than the roton minimum (but larger than 7.15 K), one
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