VOLUME 75, NUMBER 13

PHYSICAL REVIEW LETTERS

25 SEPTEMBER 1995

Where Are the Hedgehogs in Quenched Nematics?
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In experiments which take a liquid crystal rapidly from the isotropic to the nematic phase, a

dense tangle of defects is formed.

In nematics, there are, in principle, both line and point defects

(“hedgehogs”), but no point defects are observed until the defect network has coarsened appreciably.
In this Letter the expected density of point defects is shown to be extremely low, approximately 107%
per initially correlated domain, as a result of the topology (specifically, the homology) of the order-

parameter space.

PACS numbers: 61.30.Jf, 61.30.Cz, 64.70.Md

An outstanding puzzle in the formation of defects
after rapid quenches is the absence of point disclinations
(“hedgehogs” or “monopoles”) in nematic liquid crystals.
One might naively expect of order one defect per initially
correlated domain. However, experiments with rapid
pressure quenches [1] report a substantial deficit to begin
with, although the expected dense network of type % line
disclinations (“strings™) is present, and rapidly reaches
a scaling regime in which the string length density
decreases as t~!'. This can be understood to be a result
of the ¢!/2 growth law of the network scale length &(z). If
there is on average about one segment of string of length
L per volume &3, the scaling of the length density &2
follows. The monopoles do not make their appearance
until 1-2 s after the quench, and then disappear again
faster than the naive scaling law of ny ~ &3 would
predict. Chuang et al. [1] observed that monopoles were
formed either by a collapsing type 5 loop or at a three-way

junction between two type % and one (nontopological)
type 1 disclinations. They were able to explain the
general shape of ny(z) by proposing that the departure
from naive scaling was due to the repulsive forces
between self-intersecting strings.

However, it seems that monopoles were only formed
by string interactions and that there were essentially
none generated in the quench. This is the puzzle, and
in this Letter a solution is presented. The answer lies
in the topology of the order-parameter space, which is
the projective plane RP2. In order for there to be a
monopole inside some sphere in the liquid crystal, the
order-parameter field has to cover its entire space twice.
It turns out that this is very hard to arrange out of the
random initial conditions produced by a rapid quench.
There is an underlying mathematical formulation of the
solution, in terms of the homology of the order-parameter
space, which is outlined briefly at the end of this work.

The order parameter of a liquid crystal is a traceless
symmetric rank 2 tensor Q;;j(x). The normalized eigen-
vector with the largest eigenvalue is known as the director
field n;(x), for it defines the average local orientation of
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the liquid crystal molecules. In a nematic the other two
eigenvalues are equal, and we may write [2]

Qij = Anin; — %5,';). (D

The free energy of the liquid crystal is, in the absence of
boundaries,

F[Q] = fd3x[L13inj3inj + L20;0;;0kQix

+ L39: 00,0 + V(Q)], 2

where V(Q) is the bulk free energy. Near the phase
transition we are justified in expanding to quartic order,
and '

V(Q) = 3atwr(Q’) + 3 Bw(Q%) + 3y tr(QY) + -+
3

The condition that the system be in the nematic phase, i.e.,
that A # O minimize the free energy, is just ay/B8% =
1/9. 1In this phase the symmetry group of the bulk free
energy density, which is the group of spatial rotations
SO(3), is reduced to the cylinder group D.., or O(2). The
manifold M of possible equilibrium states is defined by
the condition §F/8Q = 0, subject to the constraints of
tracelessness and symmetry. This is isomorphic to the
coset space SO(3)/0(2), or the real projective plane RP2,
which can be thought of as a 2-sphere with antipodal
points identified.

After a rapid quench, the order parameter is uncorre-
lated beyond a certain distance &(, which is determined
by the relative magnitudes of the quench time and the re-
laxation time of the system. The isotropic-nematic tran-
sition is weakly first order, which means that the correla-
tion length grows by a large factor as the phase transition
is approached [2], although the transition itself appears
to proceed by bubble nucleation and growth [3]. In the
cosmological Kibble mechanism [4], one assumes that the
order parameter in each nucleating bubble is constant, but
uncorrelated with its neighbor, and defects then form at
the interstices of domains where the order parameter is in
some sense maximally misaligned.
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There is a complication here, for there is generally
some preferred orientation of the director field at the
boundary between the isotropic and nematic phases. For
K15 (also known as 5CB), the nematic used by Chuang
et al., it is energetically favored for the director to be at
an angle of 63.5° to the surface [5]. Thus every suffi-
ciently large bubble contains a hedgehog (and a pair of
boojums), provided the anchoring energy WR? outweighs
the volume energy KR, where K is a combination of elas-
tic constants [6]. When two such bubbles collide, a loop
of string with topological charge —1 can be produced
around the intersection site, which keeps the total charge
in the merged bubbles unity.

Thus the substance of the present argument as applied
to nematics requires that the bubbles are not of suffi-
cient size for them to automatically contain hedgehogs.
This critical size R, can be estimated from the experi-
mental values of W and K, which are (4.8 = 1.2) X
107% ergem 2rad 2 and (2.1 = 0.3) X 1077 ergcm ™!,
respectively [5]. Thus R, ~ K/W ~ 2 X 107* cm. We
can also estimate an upper bound on the initial domain
size in the quenches performed by Chuang ez al. In the
light transmission studies of that group [7] they were able
to pick up scaling behavior from as early as 10 ms after
the quench. One can infer from the 7!/2 growth law that
the network scale length was at most about 10 xm at that
time, and therefore smaller right after the quench. Thus it
seems very unlikely that the bubbles contained hedgehogs
before merging.

One can estimate the density of defects by applying the
so-called “geodesic rule” [8—10]. This assumes that if
we pick two points x; and x, in adjacent domains with
order parameters Q' and Q?, the most likely interpolation
Q'?(x) on a line between the points is the shortest path
in M, for this locally minimizes the bulk free energy.
Since M comes equipped with a metric by virtue of
its embedding in the Euclidean field space, this path is
by definition a geodesic. Now consider three adjacent
domains, and pick three points {x;, x2,x3}. The geodesic
rule can be applied separately to each pair of domains,
and then to all three: The interpolation Q'?*(x) to the
interior of the triangle {x, x,, x3} is a geodesic surface in
M. There may be an obstruction to the procedure: If the
loop {Q'?, 0%, Q3'} is in the nontrivial homotopy class
of 7r;(M), a line defect must pass through the triangle
{x1,x2,x3}, at the junction of the three correlated domains.
A similar argument involving four domains is applied to
the formation of point defects [4], which are obstructions
to the construction of an interpolating geodesic 3-simplex
024 We shall see, however, that four uncorrelated
domains are not enough for a point disclination in a
nematic liquid crystal.

Calculating the probability of finding a defect associ-
ated with nontrivial 77,(M) at the interstices of n + 1
domains is a problem in geometric probability on the man-
ifold of equilibrium states M. This problem has been
solved only for M = S§” [I1], and for one-dimensional

defects in RP? [8] and §3/Z, [12]. The solution is rather
neat for the spheres. Consider first n = 1, where the or-
der parameter is a two component field ¢, with >, ¢2
constant. The problem consists essentially of placing
three points ¢!, ¢2, ¢ at random on the circle of con-
stant >, ¢2, and asking the probability for ¢?3 to lie be-
tween —¢ ! and —¢? (taking the shortest route). In that
case, and in only that case, will the geodesic rule sup-
ply a loop which wraps around M. Now, *¢ ' and + ¢?
divide the circle into 4. Given that ¢! and ¢? are isotrop-
ically distributed, one can convince oneself that the aver-
age length of the line segment between — ¢! and —¢? is
1/4. This is then the probability of finding a line defect at
the junction of three adjacent domains, and the number of
defects per unit area is therefore 1/ 458 . This generalizes
for arbitrary n to 1/2"*!. For strings in RP? the calcula-
tion is more involved, but it emerges that the probability
is1/m7.

The problem with trying to extend these calculations to
point defects in RP? is that four neighboring uncorrelated
domains can never generate such a defect. To construct
a hedgehog configuration of the order parameter we must
cover M twice, because the director field has an x — —x
symmetry. One cannot unambiguously do this with four
domains, for the geodesic rule produces a mapping from
the tetrahedron {x;,x»,x3,x4} which is either trivial or
contains a string passing through two of the faces. The
point is that in order to cover M twice, each face of
the tetrahedron must cover on average half of it, which
means that there will always be faces trying to cover more
than half. This cannot happen with the geodesic rule.
Thus we need more domains, which inevitably lowers the
probability of finding a defect.

To know just how many domains are needed, we need
the minimal triangulation of RP?, which is the triangu-
lation with the smallest number of vertices. In order to
be a proper triangulation, each edge must be connected to
two different vertices, each face to three different edges,
and so on. To consistently use the geodesic rule it is
necessary for the director field to map the domains to a
proper triangulation, for there will otherwise be ambigui-
ties when constructing the interpolating simplices. If we
have an arrangement of domains, which are connected to-
gether by edges and faces into a surface with the topology
of a sphere, then that surface will contain a hedgehog only
if the surface is mapped onto M twice. The minimal tri-
angulation therefore tells us the smallest surface that can
contain a hedgehog: it has twice the number of domains
as the minimal triangulation has vertices. The minimal
triangulation of RP? has, in fact, six vertices (see Fig. 1).
One can think of this as a triangulation of S? by an icosa-
hedron, with antipodal points then identified. Thus, in
order to cover RP? twice, we need a roughly spherical ar-
rangement of a minimum of twelve uncorrelated adjacent
domains.

A great deal of calculation can now be saved by an
approximation which uses a fixed triangulation of RP?
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FIG. 1. The minimal triangulation of RP?2, consisting of six
vertices, twelve edges, and ten faces. This is essentially the
top half of an icosahedron. Opposite points on the boundary
are identified.

directly. For example [13,14], if we approximate S' by
three equidistant points labeled O, 1, and 2, and assign
a string to a spatial triangle {x,x;,x3} when all three
values of ¢ are different, the probability of having a
string passing through the triangle is just the number of
different arrangements of 0, 1, and 2 divided by the total
number of possible assignments 33. Thus the probability
in this discrete approximation of a one-dimensional defect
passing through the triangle is
Pi(sh) = 31/3* =2/9, “4)

where the prime is used to denote the approximation to
the true geometric probabilities P, (M). For general n we
have

PL(S™) = (n + 2)!/(n + 2)""2. S
This approximation gets worse for large n. Using Stir-
ling’s approximation, one sees that P/(S")/P,(S") ~
n1/2e(ln2—l)n_

For line defects in RP? the calculation proceeds as
follows. The first two values of the order parameter
Q! and Q? can be any two different vertices of the
triangulation. The last point must be one of the two which
are connected to both of the first two. Thus

P{(RP*) = 6 X 5 X 2/6° = 10/36, (6)
which is close to the true value P;(RP2) = 1/#r. For
point defects, we must calculate the number of different
ways of assigning values of Q to the twelve domains.
Picking any two adjacent domains, the first values can
once again be any two vertices of the triangulation. In
a third domain, adjacent to both the first two, one must
correspondingly pick one of the vertices connected to both
those already selected. Thus

Pi(RP?) = 60/6'% = 2.76 x 107%. @)
A quick way of calculating this number is to note that
the assignment of vertices to domains is just a map from
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one icosahedron to another with opposite points identified.
Therefore P3(RP?) is just the order of the icosahedral
group, which is 120, divided by 2.

The configuration of domains occupies a volume of
approximately &3, and so the density of point defects N »
is roughly

N, = 1078¢,3. ®)

This is a very small number, as promised. If the discrete
calculation is here as good an approximation as for the
spheres, then it explains why the point defects of a
nematic liquid crystal are not found after a rapid quench:
They require a very special arrangement of the order
parameter over many uncorrelated domains [15].

The icosahedral arrangement of domains can be ex-
tended into the body of the material by the addition of
a further domain in the center. One then realizes that the
“point” disclination is actually a small loop of size ~ &g
encircling the central domain. The value of the order pa-
rameter here merely controls the loop’s orientation. Thus
there is a sense in which there are no point disclinations
at all. What we have calculated is merely the density of
the smallest possible loops which can form hedgehogs.
As the smallest loops are the most common, larger loops
with unit topological charge are presumably even rarer.

The explanation in terms of the Kibble mechanism
may still not be wholly satisfactory, for there is also a
severe initial deficit in nz, the number density of loops
[1]. Calculations using the Kibble mechanism for Abelian
strings, where M = § ! indicate that the fraction of string
in the loops is 0.2-0.3 [13,14], whereas np &3 is never
greater than about 4 X 1073, It is possible that with M =
RP? the loop fraction is much lower, but preliminary
measurements are not encouraging [16].

To conclude, I outline the mathematical structure im-
plicit in the geodesic rule. Recall that the construction
starts with points {x;} in uncorrelated domains, and the
corresponding values of the order parameter {Q’}. One at-
tempts to construct an approximation to the field configu-
ration over the whole of R? by extending the points {x;}
to a full triangulation, defining the order-parameter field
Q(x) by the geodesic rule. This determines how to “fill
in” the set of closed figures (points, lines, and triangles) in
order to create others (lines, triangles, and tetrahedra) of
higher dimension. The result is a simplicial complex [17]
in the order-parameter space M. However, the procedure
fails when some subcomplex cannot be filled in, that is,
the subcomplex is not the boundary of another, higher-
dimensional complex in space M. The order parameter
has to leave M, and a defect appears in the corresponding
region of R3. This can happen if and only if the space
has a nontrivial homology group H,(M). Thus the Kib-
ble mechanism coupled with the geodesic rule produces
defects of dimension d in a space of dimension D only if
H,(M), withn = D — d — 1, is nontrivial. The second
homology class of RP? is zero, which is the underlying
reason for the low density of point defects.
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