
VOLUME 75, NUMBER 13 PH YSICAL REVIEW LETTERS 25 SEPTEMBER 1995

High-Order Frequency Conversion in the Plasma Waveguide
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It is shown that a plasma fiber waveguide can provide phase matching over extended interaction
lengths for the generation of high-order harmonics and difference frequencies through wave mixing
or parametric amplification. An important consideration is that the plasma waveguide mode structure
is independent of wavelength. Phase matching may be achieved through either frequency tuning or
waveguide structure tuning.

PACS numbers: 52.40.Fd, 42.65.Jx, 42.65.Ky

We have recently developed and characterized a
method for optically guiding high-intensity laser pulses
in a plasma fiber waveguide [1—3]. The extremely
large product of interaction length and intensity made
possible by this waveguide suggests its application to
short wavelength generation by very high-order frequency
conversion. An example of one of these processes under
considerable recent study is high-harmonic generation by
short intense laser pulses in gas jets of limited extent [4].

In this Letter several plasma waveguide-based schemes
are proposed for the phase matching of high-order fre-
quency conversion. Low-order wave mixing processes
in plasma fibers are closely related to similar processes
in conventional solid fibers [5], but in plasma fibers
more degrees of freedom are available for phase match-
ing the conversion process at all orders. Nonlinear optics
in plasma fibers is distinguished by (1) the unique dis-
persion properties of the fiber, leading to among other
things the wavelength independence of the transverse
mode structure; (2) the confinement of extremely high
propagating intensities, which gives rise to very high-
order nonperturbative processes which can occur with ef-
ficiencies comparable to lower-order processes; and (3)
the dynamic evolution of the plasma waveguide in time,
so that the geometric contribution to its dispersion rela-
tion is tunable and offers a degree of freedom of phase
matching not previously available.

In our guiding technique, an axicon lens [1] brings a
laser pulse to a line focus in a gas. The shock expansion
of the resulting spark forms a favorable refractive index
profile into which a second laser pulse is injected after an
adjustable delay. In experiments to date, pulses have been
guided at distances of 2.2 cm (—70 Rayleigh lengths) at
intensities greater than 10'4 W/cm2, sufficient to be in
the regime of high-harmonic generation in atoms. In the
plasma waveguide, the nonlinear polarization is induced
by the input field(s) in ions and high ionization poten-
tial neutrals, which may be present. It has been shown
[6] that the rate of harmonic emission is approximately
proportional to the ionization rate; at sufficiently high in-
tensity, harmonic emission is as efficiently generated from
ions as from neutrals. Moreover, ions should produce a

greater number of harmonics, since the maximum photon
energy in the plateau is F „=I~ + 3.2U„, where I„ is
the ionization potential and Up is the ponderomotive po-
tential [5].

We consider the case in which the free electron contri-
bution to the refractive index dominates the bound electron
contribution (this is reasonable, provided all wave frequen-
cies are low compared to the resonance frequencies of the
background ions). The channel electron density profile is
modeled to be axially invariant and monotonically increas-
ing with radius ~r~~ from the channel axis out to some
boundary, outside of which it remains constant. Such a
density profile, which we have called the "finite" profile
[2], can support bound modes, and possesses a cutoff. In
the real experimental profile, the electron density decreases
beyond its peak at the position of the shock wave, leading
to tunneling or leaking of field energy for waves which are
near cutoff [2]. Here, however, we are concerned mainly
with bound modes, so that the finite profile can be em-
ployed to good approximation. The transverse eigenmodes
u(rz) of the plasma waveguide are found from

[V'~ —47rr, N, (r~)]u = —g u,

where Fp(r~, z, co) = u(r~) exp[iP(co)z] is a pure propa-

gating mode, iv'~ is the transverse Laplacian, r, = 2.82 X
10 '3 cm is the classical electron radius, $ = k —p is
the eigenvalue, and k and p are the vacuum and waveguide
wave numbers, respectively. Some general conclusions
may be drawn without specifying the exact electron density
profile N, (r +). The left side of Eq. (1) is independent of k,
so that the eigenvalues g and eigenmodes u(r~) are wave
length independent (The limits .to this property are set by
the nonpropagation of wavelengths longer than the plasma
critical density cutoff [3] or the onset of relativistic elec-
tron dynamics through ultrahigh intensity e~A~/mc —1

and/or short wavelength 2~/k = A = Ac, where A is the
vector potential and Ac is the Compton wavelength. )
Therefore, any light generated in the waveguide may be
decomposed into the same set of modes as the driving
wave(s). As an example, if only the lowest order trans-
verse mode of the driving wave is bound by the finite guide,
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then only the lowest order mode of the generated wave is
bound, and these transverse modes are spatially the same.
High-order frequency conversion in a leaky guide [2] will
be treated in future work.

Equation (1) may be rescaled to illustrate the depen-
dence of the channel propagation wave number p on the
channel structure. Consider a density profile N, (r~) =
N, p

= AN, f(r~), where f(r~) 0 monotonically as
~r~~ ~ 0. If we define the characteristic radius w, h by
the relation AN, —= 1/r, 7rw, h, Eq. (1) becomes

4 V~ —f(r~) u = —qu,

P = k —r, N, pA—
~W, h

(3)

The propagation phase P z has two contribu-
tions: the plasma dispersion term (k —r, N, p jt)z =
k(1 —N, p/2N„)z, and the waveguide geometric con-
tribution Arjz/vrw, h. The latter replaces the free
space focusing phase (which for Gaussian beams is
tan '[A(2p + l + 1)z/vrwp], where wp is the minimum
1/e beam radius).

Coupling of the interacting and generated fields to
the waveguide modes plays a crucial role. We can
expand the bound portion of the nonlinearly generated
field in waveguide eigenmodes according to E(r, t) =
1

z [gj a j (z t) uj (1 J ) exp t (pj Qz tlap t) + c.c], where the
mode amplitudes a~ are slowly varying in z and

where the transverse coordinate is now scaled to ~,h, and
we define a new eigenvalue zj = (g —4' r,N, p)w, q/4
Note that zj ) 0, since both (7'~u)/u ( 0 and f(r~) ~ 0
as ~rz~ ~ 0; g is of order unity for low-order modes.
For azimuthally symmetric profiles f(rz) = f(r), the
eigenvalue is q = q„i, where p and l are radial and
azimuthal mode indices. For the useful special case of an
infinite parabolic profile f(r~) = (r/w, h) (with no limit
in r), it can be shown [7] that rj„~ = 2p + l + 1 and

u(r~) = utt(r, P) = e "~s'L„'(2s ) exp( —s ) (Laguerre-
Gaussian functions), where s = r/w, h. Here, the lowest
order mode upp is a Gaussian with 1/e radius r = w, h,
while N, (w, )h— N, p

= AN, (—= I/7rr, w, h), which is
simply the density difference criterion for guiding. This
criterion applies quite well to nonparabolic azimuthally
symmetric profiles, for which it has been shown that the
lowest order modes are nearly Gaussian with 1/e field
radii given to good approximation by w, h [2]. For general
density profiles, the sets of u and g must be calculated
numerically [3].

The waveguide propagation wave number is
then given by P = k —47rr, N, p

—4'/w, h
=

k [I —N, p/N, „—4'/(kw, h) ], where N, „=k /47rr,
is the critical density. The second and third quantities in
parentheses are small [typical values of these terms for
a guided optical. driving wave are N, p/N„~ 10 and
(kw, h) ~ 10 ], so that

c.c. is the complex conjugate of the previous term, pjp =
pj(cu = cop), and cup is the center frequency of the
generated wave. We ignore the contributions of leaky
and free waves, which will be considered in future
work. Fourier transforming this expression and inserting
the result into the Fourier-transformed wave propagation
equation, projecting onto the jth bound channel mode
uj, neglecting group velocity dispersion (GVD), and
returning to the time domain gives

277 l Mo
2

a, (Z, 7) = c
az ' ' pjpc'

d r~PNLu*(r~) (4)

for the growth of the amplitude a~ in the nonlinearly
generated field of center frequency ~0. Here ~ = t-
z/vgp is a time coordinate local to the pulse (r = 0
corresponds, say, to the pulse peak), v~p = (Bcp/BPj)Q
is the group velocity of the jth mode at ~ = coo, pN„
is the nonlinear polarization (slowly varying in time, but
not in space), and the integration is over the channel cross
section. To evaluate the growth of the mode amplitude
for a fixed position on the pulse (constant r), Eq. (4) is
integrated with respect to z.

If two interacting modal fields E& and E2 are quasi-
monochromatic with frequency cu& and cu2, and have en-
velopes varying slowly in time compared to the medium
response, the resulting nonlinear polarization at frequency
~ can be written as

P —P (E E 3 i%'(&1,&2,P I,P2)NLi 1 2re

where PNL(E~, Ez) and %' are real;
PNL, El(rJ, z, 71, tp]), and Ez(r L, z, rp, Mz) are
slowly varying amplitudes in time and space,
r~ z = t —z/v~(cut z) are local time coordinates of the
interacting fields [with group velocities v~(~~ z)], and

p~(z) and pz(z) are their modal propagation phases. If
cu& and co2 are commensurate, then PNL may also depend
on cp~ and p2, but we do not consider that case here. In
the low intensity limit, where lowest-order perturbation
theory applies, I'(Et, Ez, p~, pz) = Pp + my~ npz
for sum or difference frequency generation
cu = map~ ncuz (m + n odd, cp ) 0), and Pp 1s

constant. At higher intensities beyond the perturbation
limit, it has been shown [8] that this can be generalized by
writing %(E~, Ez, p~, pz) = P(E), Ez) + mp) ~ npp,
where P(E&, Ez) allows for the possibility of an
intensity-dependent phase. An intensity-dependent phase
of the field-induced dipole moment has been predicted
in calculations [9], with some supporting experimental
observations [10]. Equation (4) then becomes

2
2'7T I COp

Q~tg, V) e'
Bz pjpc

d r~ PNL(Ei, E~)u,*(rz)e'

(6)
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where g corresponds to mode u~. Note that if the driving
and generated waves are in the same channel mode (gi =
ri), Ak ( 0 for n ) 1 and phase matching is impossible.
For g~ 4 g, Ak = 0 gives the modal phase matching
condition,

I +q
I +g) (8)

where I' = r, N, prrw, h
= N, p/AN„and I ' is a mea-

sure of the channel depth. Therefore, phase matching
for lowest-order harmonic generation can occur only
through coupling of the harmonic light to channel modes
higher than that of the driving wave. For N, o in the
range 10' —10' cm and ~,h in the range 10—50 p, m,
I is in the range 0.1 —100. Equation (8) suggests that
if the driving wave is coupled to a low-order channel
mode (gi —1) and the harmonic to a high-order mode
(rl » gati), and I is of order rti, then a harmonic of or-
der. n —g' could be phase matched. Since the mode

g must be bound, this requires, for a symmetric chan-
nel, an approximate density difference N, (r ) —N p

=
AN, (r ) ) rt~/nr, r2 = n4/7rr, r~, where r = r is

where Ak = mpi(cubi) ~ np2(co2) —p~(cup) for the
case where the interacting modal fields are channel eigen-
modes gi and g2 with propagation phases pi = pi(aii)z
and qp = Pp(cu2)z.

The intensity-dependent phase i/t(Fi, E2) contributes to
the modal overlap of the nonlinear polarization through
the transverse integration in Eq. (6). It may also con-
tribute to the phase mismatch if there is a significant
difference in the group velocities among the generated
and driving waves. For sufficiently small GVD however,
'r = ri = 'r2, and i/I(Et, Eq) does not contribute to the z
integration of Eq. (6), and that case is assumed here. We
therefore identify AkL as the phase mismatch in a plasma
waveguide of length L, with optimum phase matching for
~AkL~ && 2~ Light. is generated in any channel mode
u~ to which PNL couples; the efficiency of generation de-
pends on Ak and on the overlap of PNL with u~. Regard-
ing GVD, the maximum envelope slip for similar modes

g over a channel of length L is As —(Np271/2~)Aq,
where N&2 = L/(vrw, h/A2) is the number of Rayleigh
lengths of channeled propagation of the lowest frequency
driving wave. If Ng2 —25 and g —1, then As —SA2,
which is small compared to envelope widths ~100 fs, al-
though the numerical degree to which envelope slip af-
fects phase matching requires knowledge of the detailed
functional dependence of i/t(Ei, E2) [9].

We first consider the process of lowest-order
nth harmonic generation, cu = n ~ ~, for which
Ak = nPi(a~i) —P~(ai), or, using Eq. (3),

kk = nh~ r, N, o(l—

the radius of peak electron density [2]. For large n, a very
deep channel is required. Such a channel, which may be
difficult to produce in any case, will support many modes
such that the transverse spatial overlap of the nonlinear
polarization PNL with mode g will likely be small.

A scheme ensuring better overlap is difference fre-
quency generation. This has been suggested as a
means to compensate the phase shift for tightly focused
beams in plasmas [11]. In the plasma waveguide,
Ak = mPi(cui) —nP~(co~) —P, (cu), or

1
Ak = [—mA, (r + 7J, ) + n A2(r + Y)2)+ A(r+ g)]

mW, h

(9)

using Eq. (3). If we assume m, n» 1 and cui ~ aiq,
most of the phase matching occurs through the first two
terms in this equation, since the third term is down
by —I/m2 from the first two and may be ignored if
the residual phase mismatch it produces is small. This
short wavelength limit (SWL) requires ~AkL~ = (I +
ri)Ng « 27r, where Ng = L/(vrw, h/A) is the number
of Rayleigh lengths of propagation of the generated
light. For I = g =1, L= lcm, and ~h =10pm,
the SWL occurs for A ( 100 nm. In the SWL, phase
matching can occur over a range of channel modes q of
low order, effectively increasing the coupling of PNL.

First, consider the case where m, n, and I are given,
and either ~ i or ~2 is tuned to achieve phase match-
ing. This analysis also applies to high-order parametric
amplification, with a~ as the signal and either or i (cu2) or
~p2 (aii) contributing to idler (pump) waves, and with the
signal and/or idler amplified from noise such as plasma
radiation. In the SWL, Ak = 0 yields cubi/cu2 = m(I +
gi)/n(r + g2), giving phase matched output at fre-
quency ai = m~i[1 —(n/m) (I + riq)/(r + gi)] for
the case where co] is fixed and ~2 is tuned. For the
case where all fields are in the same mode g~ = g2 = g,
phase matching is independent of waveguide parameters
(same-mode phase matching), and is therefore insensitive
to variations in V and w, h along the channel as long as
the fields stay in comparable modes. Owing to the wave-
length independent mode structure of the plasma wave-
guide, this is likely. Equation (9) then gives q

—6 +
1/q = 0, where q = aii/m2 ) 1 and 6 = (m2 + n2—
1)/mn, and either cubi or ai2 is tuned to achieve phase
matching. For m» 1 and n» 1, 6 = m/n + n/m
gives q„&, = m/n and phase matched output at cu =
m a~ i [I —(n/m) ]. Given the requirement

~
AkL I ( ~,

phase matched difference frequency generation occurs for
both different-mode and same-mode cases over a band-
width Acuq/ai~ = 2' /nNq2(r + ri2) if ~i is fixed and
cu2 is tuned [or Aevi/aii = 2~ /mNgi(I + gi) for the
case of a~q fixed and oui tuned]. This is rather sub-
stantial: For example, for N~2 —25 and I" —gq —1,
Aco2/a~q = 0 4/n, so that low orders of .subtracted pho-
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tons ensure phase matching over an extremely wide tuning
range. Since Ato/co —0.01 for a 100 fs optical pulse, it
is also seen that ultrashort pulses can be phase matched to
high order over their full bandwidths.

If ~~ and ~2 are given, the values I, n,
and rl may be chosen to minimize Ak, but since these
may be changed only incrementally, the channel inverse
depth I must be tuned to achieve phase matching.
This is accomplished by varying the gas density and
delay between channel formation and injection. We
have already demonstrated the ability to continuously
tune I and control the mode structure [2]. In the
SWL, the optimum inverse depth yielding Ak = 0 is
I,&,

= (rrl~ —
qual&)/(q

—r), where r = m/n and q =
cot/coz ~ l. It is notable that for the case of q = 1,
difference wave mixing can take place with one color
if g~ 4 g2, or coupling occurs to more than one mode,
where the subtracted photons are provided by the higher-
order mode rlz (co = mao& —neo& may be viewed as
a higher-order process of harmonic generation than the
lowest-order process co = neo~). In this case, once the
phase mismatch has been minimized via the tuning of I,
co~ may be changed without affecting Ak, allowing for a
tunable harmonic source.

Note that for phase matched difference wave mixing
(either with tuned to~ 2 or tuned I ), it is not necessary to
have a deep channel (small I ) or a high mode number

Therefore, the transverse spatial overlap of PNL with
phase matched modes is better than that for the case of
lowest-order harmonic generation.

For phase matched difference frequency generation
over long channels (except for the same-mode case), the
channel inverse depth I must not vary appreciably. In
the SWL, the phase mismatch resulting from an average
deviation AI along a channel of length L is AkL =
—AI L(m A~

—nAz)/~vv, h. This gives approximately

(
I rid NR i r12NRz I

for the tolerable level of inverse depth variation. For
example, if to/coz —1.8, Np ~

—25 and Npz —45, with
rl~ —1 and rl2 —3, it is required that ~AI /I ~

~ 0.05.
This sensitivity indicates the importance of producing
a uniform plasma waveguide. Waveguide creation by
ionizing a gas with a moderately short, intense laser pulse
is well suited for this [3].

We have shown that the plasma waveguide can be used
to achieve phase matching in both harmonic generation and
difference wave generation (or parametric amplification).
Lowest-order harmonic generation (co = neo~) is phase
matched by generating the harmonic in a higher waveguide
mode than the driving wave. In difference wave genera-
tion (co = mco~ —ntoz, where I ~ n and co~ ~ co2),
phase matching is achieved by dividing the driving wave(s)
over more than one guide mode or maintaining a common
mode for all waves. This offers the possibility of signifi-
cantly better spatial overlap of the driving polarization with
the channel modes than in lowest-order harmonic genera-
tion. Because high-order processes at high intensity can
occur with efficiency comparable to lower-order processes,
difference wave generation may be the more efficient route
to high-order frequency conversion.
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