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Corresponding States Hard-Sphere Model for the Diffusion Coefficients of Binary
Dense-Plasma Mixtures
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A recent free-energy model for charged Yukawa mixtures enables one to obtain, in simple analytic
form, the diffusion coefficients of dense plasmas from those for "effective" hard spheres. This hard-
sphere model was checked by new molecular dynamics simulations of highly asymmetric binary ionic
mixtures to demonstrate a corresponding states relation for the diffusion coefficients in terms of the
excess entropy. It is accurate for moderately coupled plasmas, as well as for strongly coupled plasmas,
when the kinetic theoretic approximation breaks down.
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Ionic diffusion in dense plasma mixtures has been of
interest recently [1—8] in many quite disparate fields: (1)
Diffusion is central for understanding the distribution of
heavy elements in the atmospheres of white dwarf stars,
and the composition of fluid planets. (2) It affects the
performance of multilayer x-ray mirrors. (3) Interdiffu-
sion coefficients control the evaporation rate of metal in-
jected into the fuel of an inertial-confinement fusion (ICF)
capsule by hydrodynamic instabilities [9]. (4) There are
many laboratory situations in which it is important to
know how fast two hot, ionized materials mix across an
initially sharp interface. In all these applications the fluid
can be dense, and estimates based on, e.g. , the Chapman-
Spitzer formulas [10,11]for gases are not adequate despite
recent advances [5] which yielded a more systematic treat-
ment of the Coulomb logarithm in the collision integral.
The accuracy of approximations based on kinetic theory,
which are supposed to extend Chapman and Spitzer to
high densities, cannot be judged a priori, and these have
to be gauged by simulations.

Molecular dynamics (MD) simulations for the inter-
diffusion coefficient in binary Coulomb plasma mixtures
have been performed in recent years for systems with
low asymmetry of the charges and of the masses [1—
4,6]. These results supplement a large body of data for
single component systems with various interparticle po-
tentials [12—14], as well as results for the interdiffu-
sion coefficients in mixtures of noble gases described by
the Lennard-Jones potential [15] and in mixtures of hard
spheres [16]. Results of equilibrium MD simulations us-
ing the Green-Kubo relations and the velocity autocor-
relations agree to within a few percent [17] with those
obtained from nonequilibrium MD in which a "current"
due to some external field is measured. The simulations,
and in particular for mixtures, are very time consuming;
they suffer from inherent problems related to long time
tails, and are estimated to have 10%—20% accuracy at
best. A kinetic theoretic approximation to the diffusion

coefficients which generalizes Spitzer to high density was
described [3,4], which is in good agreement with the com-
puter simulations [1—4] in the weak to moderate coupling
regime, but which breaks down in strong coupling.

Many of the simulations for the transport coefficients
of strongly coupled one-component Auids can be corre-
lated with equilibrium thermodynamic properties accord-
ing to the plot of a reduced (dimensionless) coefficient
as a function of the reduced excess (i.e. , configurational,
over ideal-gas value) entropy [18]. The diffusion coeffi-
cients can thus be estimated within about 30% by using
corresponding states values based on the excess entropy
[13,18,19]. Because of the choice of macroscopic reduc-
tion parameters (volume and temperature) for the trans-
port coefficient rather than microscopic potential parame-
ters, this corresponding states relation [18] can be and has
been applied directly to real materials [19]. The excess-
entropy corresponding states were motivated [18] by the
success of the (variational) hard-sphere (HS) perturbation
theory [20] for simple fiuids in which the hard-sphere ra-
dius, or equivalently the excess entropy, was used to pa-
rametrize the structure of equilibrium fluids.

This Letter extends the excess-entropy corresponding
states to moderately and strongly coupled plasma mixtures.
A recent comprehensive and accurate free-energy model
[21] for charged Yukawa mixtures enables one to obtain,
in simple analytic form, the diffusion coefficients of dense
plasmas from those for "effective" hard spheres. Using
a standard code [22] modified to treat Ewald potentials
for Yukawa charges (see Ref. 34 in [21]), the results of
this hard-sphere model were checked by new molecular
dynamics simulations of binary ionic mixtures, with high
asymmetry in the charges and masses, to demonstrate a
corresponding states relation for the diffusion coefficients
in terms of the excess entropy.

Many quite disparate systems with screened Coulomb
interactions, including dense stellar materials and inertially
confined plasmas, can be described by Yukawa interparti-
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cle potentials, e —a r/r, which make important reference
systems in condensed matter physics [23]. We consider
classical binary mixtures (i = 1, 2), consisting of N; pos-
itively charged Z;e ~ 0, Z2 ~ Z&, point particles of mass
M;, interacting through the Yukawa pair potentials

u;, (r)/kt1T = Z;Z) I'e '/r.
Measuring distances in units of the total Wigner-Seitz ra-
dius, a = (3/4~n)', n = N/V —= (N1 + N2)/V is the
total number density, I = e /akt1T is the conventional
plasma coupling parameter, and T is the temperature.
We estimate the diffusion coefficients for the Yukawa
particles by those for the "effective" hard spheres. We
thus need the "effective" hard-sphere radii R~, R2 for
the charged Yukawa particles or, alternatively, the ratio
$ = R2/R1 ~ 1 and the total packing fraction g of these
effective spheres.

For a one-component Yukawa system with Z; = 1,
the configurational (excess) entropy, in units of NkB, is
a function of two variables: s = S"" /Nkt1 = s(r, n).
For the mixture, it depends also on the charges and
on the relative concentrations, x =—x2 = N2/N = 1—
x1, S'";"„/Nkt1 = s;,(x, Z1, Z2, I, n). The approximate
scaling law for Yukawa mixtures has the form [21]

~~1. = (1 —x)~(r1, ~1) + x~(r2, ~2),
where (i = 1, 2)

n;=nA;, (3)

and where the A; are obtained from the solution of the
following set of nonlinear coupled algebraic equations:

A,
Z, Q(nA, )

l = 1, 2.
(1 —x)Z1 Q (ef A1) + XZ2 Q (n A2)

'

(4)

The plasma is weakly, moderately, or strongly coupled
according to whether I,ff x1I 1 + x2r2 (( 1, —1, or
» 1, respectively. The function Q (t) = 2t /3[e '(t—
1) + e '(t + 1)] ~ 1 has the following physical mean-
ing: The Yukawa intermolecular potential has the special
property [21] that the potential outside a spherically sym-
metric uniform distribution of charge Z;, inside a sphere
of radius A;, retains the Yukawa form, but the charge is
renormalized by the factor 1/Q(nA, ), i.e. , 4(r ~ A;) =
[Z;/Q(nA;)]/e "/r The Gauss-Ne. wton theorem for
the Coulomb potential (a = 0) is manifestly satisfied by
Q(0) = 1, A; = (Z;/(Z))'t, and the Yukawa mixing rule
[21] corresponds to the "linear mixing rule" [24] approxi-
mation for unscreened plasmas. The Yukawa mixing
rule has a simple physical meaning in the context of the
Thomas-Fermi model for the equation of state of mixtures
of elements [21].

The A; play the role of effective hard-sphere radii.
They also correspond [21] to the asypmtotic strong
coupling limit of the variational hard-sphere model using
the Percus-Yevick approximation for which the ratio g
does not vary strongly with the coupling parameter I .

An accurate estimate of the excess entropy for the
one-component Yukawa system s(r, n) is obtained by
using the variational fitting procedure [27]: Apply the
variational hard-sphere model with the PY pair functions
to the one-component Yukawa and adjust the hard-
sphere excess entropy function sHs(g) = s~;, Hs(rt, s =
l, x) + As(g), with As(g) chosen to fit the simulation
results [28] for the unscreened Coulomb potential.

For the diffusion coefficients we use the Chapman-
Enskog approximation for hard-sphere mixtures as given
by Chapman and Cowling (pp. 165 and 170 in Ref. [11])
and by Ref. [29], corrected in view of new simulation
results [16]. It is essentially the dilute gas result for
hard spheres rescaled by the pair contact probability. For
plasmas it is customary to present the reduced coeffi-
cients D* = D/cu„a2, where cu„is the plasma frequency
co& = (4nne (Z )/(M))'i, while (M) = (1 —x)M1 +
xM2 and (Z2) = (1 —x)Z1 + xZ2 denote weighted av-
erages. The results are given by

D, ((M)/M )'~2C

8(—)'~'rj1 (r(z'))'~'IV2 3 2/3 (7)

where the index j corresponds to one of the three
cases j = 1, 2, 12. The two self-diffusion coefficients
are D~, D2, the interdiffusion coefficient is D~2, M~2 =
2M1M2/(M1 + M2), gf = g/[1 + x($ —1)], and

D* =

IV1 (1 x)G11 + G12(1 + e) ((M12)/Ml)4

IV2 xG226 + G12(1 + 6 ) ((M12)/Ml) 1 (8)4

G12(1 + $) ~

=1 2

4

where G;, = g;j(r = R; + r, ) are the contact values
[25] of the Percus-Yevick radial distribution functions
g;~(r). C is an optional correcton factor of about unity
which we choose here as C = Ct(71)C2(s~;, ). Ct(g)
is the ratio (-1) between the simulation and Chapman-
Enskog values for the diffusion coefficient for the one-
component hard spheres [16]. C2(s;, ) is the factor (—1)
which adjusts (to about 20%) the present hard-sphere
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We thus maintain a fixed ratio of the hard-sphere radii

$ = A2/A1.

The relatively high accuracy fo the Percus-Yevick (PY)
theory [25] for the pair correlation functions and equation
of state of hard-sphere mixtures, except for very special
conditions corresponding to phase separation (which is
not predicted by the PY theory), have been demonstrated
once again by recent density functional calculations [26].
Using the "compressibility" PY excess entropy of the
hard-sphere mixture s;, Hs, we use Eqs. (2)—(5) and
solve the following equation to obtain g:



VOLUME 75, NUMBER 13 PH YSICAL REVIEW LETTERS 25 SEPTEMBER 1995

100—

(U

U

(D
0
U

5
4

3
0

2

1 0—'I

0
0

Q

lQ —2

~ 0
0 4 o

0
0

model to the simulation results for the one-component
Coulomb plasma [14] (see Fig. 1). Setting C = 1 does
not change the overall picture obtained from the hard-
sphere model.

The MD runs used 216 particles, and the self-diffusion
coefficients were calculated from intergals of the veloc-
ity autocorrelation functions and from the mean square
displacement of the particles, with good agreement be-
tween these two estimates. The interdiffusion coefficient

TABLE I. Reduced diffusion coefficients for equimolar bi-
nary Coulomb-plasma mixtures (see Fig. 1). Present MD re-
sults (D*) compared with the hard-sphere model (D*).

M, /M, z, /z, r, D] Di D2 D2

0 3 I . i, I s I I I I I I I I, & I i I I I I I I I I, & I

1

1QO 2 3 4 101 2 3 4 102 2

coupling strength, rI

FIG. 1. Reduced diffusion coefficient D; (i = 1, 2) as a func-
tion of the coupling parameter I;. The filled diamonds
(Ref. [14]) and circles (present) are the MD results for the one-
component Coulomb plasma (OCP) to which the present model
is adjusted by the factor C —1. The open squares are the
present MD results for equimolar (x = 0.5) binary Coulomb
plasma mixtures, while the open circles are the corresponding
results of the hard-sphere model; every I; entry in Table I is
represented by a pair of one open circle and one open square.

TABLE II. Reduced diffusion coefficients for the H/He
mixture (Mq/MI = 4, Z2/ZI = 2). MD results DI2 from
Ref. [2] and present DI, Dq, compared with the hard-sphere
model (DI, DI, DIz).

Di Di D2 D2 D]

0.50 39.74 0.0113 0.0123 0.0066 0.0063 0.0109 0.0097
0.75 40.83 0.0168 0.0165 0.0107 0.0090 0.0122 0.0114
0.25 40.61 0.0073 0.0079 0.0040 0.0039 0.0076 0.0071

is a product of a Green-Kubo intergral and a thermody-
namic prefactor which can be well approximated by unity
in the moderate and strong coupling regimes. We ob-
tained very good agreement with the literature data for
the one-component plasms (OCP) [14] and for the H/He
mixture [1—4], and we estimate the accuracy of our re-
sults for the diffusion coefficients to be about 20%.

The MD results are compared with the hard-sphere
model in Fig. 1 and in Tables I—IV. We considered a
wide range of values for the mass, M2/Mi, and charge,
Z2/Zt, ratios. For unscreened (Coulomb) plasmas the fol-
lowing general picture emerges: (1) The thermodynamic
scaling parameters I; are also relevant for understanding
the results for the diffusion coefficients. (2) As long as
I, ~ 1, when i denotes any one of the plasma compo-
nents, the hard-sphere model results for the diffusion co-
efficient D,

* of the same component is accurate to about
30% for results with variations of three orders of mag-
nitude. (3) It has been previously demonstrated [1—4]
that the interdiffusion coefficient, D~2, can be well rep-
resented by an appropriate average, D~2, of self-diffusion
coefficients, Diq = Di2 = IT[x2Dt + xtDq]. For mod-
erately and strongly coupled plasmas the thermodynamic
factor IT can be replaced by unity IT = 1. Our MD re-
sults extend the validity of this approximation also for
highly asymmetric mixtures. In agreement with Ref. [2]
we find that D~2 is somewhat smaller than D~2, but the
difference does not exceed 20%. (4) Moreover, the pre-
dictions of the hard-sphere model of the ratio Dtq/DI2
are accurate to better than 10%. For example, for the
cases in rows 1, 2, 4, 8, and 9 in Table I, the MD re-
sults are Dt2/DIq = 1.12, 1.00, 1.02, 1.20, 1.14, and
the hard-sphere model results are Dip/Diq = 1.05, 1.05,
1.05, 1.12, 1.12, respectively.

This picture remains true also for screened plasmas, but
with somewhat less agreement between the MD results
and the hard-sphere model. The screening reduces the

4
4
4
4
10
25
40
40
40

2
2
2
2
4
8
12
12
12

1.15
4.54

9
44.9
11.97
2.97
0.23
1.15
2.88

0.88 1.09
0.17 0.21
0.104 0.105
0.014 0.013
0.048 0.040
0.174 0.123
5.1 1.2

0.336 0.237
0.128 0.077

3.66 0 41 0 59
14.4 0.10 0.12
28.5 0.061 0.055
143 0.0066 0.0065

120.7 0.0145 0.0115
95.1 0.016 0.019
14.4 0.124 0.142
72.5 0.017 0.026
181 0.004 0.008

0.75
0.50
0.25

Di

0.665
0.906
1.256

Di

0.515
0.676
0.996

D2

0.226
0.293
0.394

0.265
0.357
0.545

Di

0.552
0.605
0.628

Di2

0.459
0.530
0.676

TABLE III. Reduced interdiffusion coefficient for the
Si I~+-Sr~6 mixture (Mq/MI = 88/28) at I = 0.005 (i.e. ,

rI —1, I'2 —6). MD results (D*) from Refs. [1,3] compared
with the hard-sphere model (D").
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TABLE IV. Screening effects on the diffusion coefficients for
the equimolar H/He mixture. Ratio A; = D;/D; as a

(n =0)

function of n for two values of I . Present MD results (A)
compared with the hard-sphere model (A).

4
4
40
40

1.03
2.06
1.03
2.06

1.09
1.73
1.37
2.48

1.60
2.90
1.85
3.90

1.23
1.71
1.44
2.87

1.63
3.10
1.89
4.19
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