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The formation and dynamics of coherent vortices in the Hasegawa-Mima two-dimensional model
of drift-wave turbulence is studied numerically. The effect of “vortex shielding” due to the presence
of a characteristic length scale (ion Larmor radius p;) leads to important differences between self-
organization in drift-wave and Navier-Stokes fluid turbulence. While it may not be surprising that a
finite deformation radius leads to the formation of coherent vortices, we show here that it also results in
the appearance of long-range order in the system, i.e., the formation of a vortical “quasicrystal.”

PACS numbers: 47.27.Eq, 52.35.Ra

Conservation of enstrophy is the most important feature
of two-dimensional (2D) hydrodynamics since it leads to
the inverse energy cascade, i.e., creation of the large-scale
energetic velocity fluctuations in the system where en-
ergy is introduced by an external source at some small
scale [ << L, L is the dimension of the flow. Simulta-
neously, small-scale structures, containing the dominant
part of enstrophy, are formed due to the direct cascade.
These two distinct dynamic processes lead to the self-
organization, i.e., formation of coherent structures, such
as isolated long-lived vortices in 2D Navier-Stokes (NS)
turbulence [1-4]. It has been shown that these vortices
appear in both driven and freely decaying turbulence, pro-
vided that the forcing and dissipation are not too strong.
A necessary condition for the formation of strong coher-
ent vortices is the accumulation of a significant amount
of energy within regions of closed streamlines leading to
the trapped trajectories of vorticity. Various mechanisms
may lead to the formation of closed streamlines, the most
typical of which is the small-scale roll up of sheared vor-
tex filaments, stabilized by viscous smoothing. However,
these small eddies are only seed, or nuclei, vortices and
become coherent only if they trap enough energy to sur-
vive dissipation [5].

The above picture may hold in unbounded systems in
which inversely cascaded quantities can expand to the
ever larger scales. On the other hand, the spectra and
dynamics of vortices can change significantly if there is a
characteristic length scale which interferes with the inverse
cascade. In Ref. [6] it is shown how isolated coherent
2D vortices can appear in driven Navier-Stokes turbulence
after energy accumulates in the largest allowed scale, and
therefore, under these conditions, intermittency is a finite-
size effect. Energy pileup on a scale corresponding to
the system size is only one example of a condensation
process that can lead to the formation of coherent vortices,
but it may be one relevant to atmospheric dynamics.
Another scenario is investigated in [7], where the inverse
energy cascade is artificially interrupted at a scale [y =
1/kr. There the energy flux in wave-number space is
I'(k) = const < 0 at k = k7 and ['(k) = 0 at k < kr,
leading to energy accumulation in the mode E (k7). As a
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result, coherent vortices form a close to ideal crystal with
the lattice constant /o. The question arises whether this
crystallization occurs in other inversely cascading systems
which have “natural” rather than artificial length scales.
One may expect that this kind of phenomenon is of general
importance: Any dynamical mechanism leading to the
decrease of otherwise constant energy flux (I' = const for
I = lp) can lead to energy pileup at scales [ = [, and
creation of an ordered vortical phase.

In this Letter we will demonstrate that vortex “qua-
sicrystals” do form for the Hasegawa-Mima (HM) equa-
tion [8]. This equation is an important paradigm for the
description of drift-wave turbulence in magnetically con-
fined plasmas (e.g., tokamaks) and has a structure identi-
cal to that of the Charney equation, describing geostrophic
motions in planetary atmospheres [9,10]. In nondimen-
sional form, the driven-damped Hasegawa-Mima equation
can be written as follows:

2V = )+ ISR =D+ F, ()

where J(a,b) = a.b, — a,b,, ¢(x,y) represents the
electrostatic potential for the plasma or the variable part
of the depth of the atmosphere in geostrophic flow, and
D and F are damping and forcing, respectively. The
parameter A is the ratio of the system size L to the
characteristic spatial scale p,, the ion Larmor radius in
plasma and the Rossby radius in the atmosphere. We
neglect wave effects, assuming that the flow is in a
strong-turbulence regime [11].

Similar to the Navier-Stokes equation, Eq. (1) has two
quadratic inviscid invariants: energy, W = Wy;, + W, =
L2 [[(Ve)? + A2¢p%dxdy = X, (k* + A2)|¢i]?, and
potential enstrophy, U = U, + U, = L™2 [[(V?¢)? +
A2(Vp)ldxdy = 3>, k*(k* + A?)|¢l?.  Both total
energy and total potential enstrophy consist of two terms
which may be referred to, respectively, as kinetic en-
ergy Wiin, internal energy W), fluid enstrophy Uy, and
“internal” enstrophy U,. Statistical quasiequilibrium
arguments [12—14] show the existence of a dual cascade
similar to 2D Navier-Stokes turbulence: inverse cascade
of energy W and direct cascade of potential enstrophy U.
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In two limiting cases, when the spectra are concentrated
at either £ > A or at k << A, the input of one piece of
the energy (Wi, or W,) and the enstrophy (Uy or U,)
dominates over the input of the other throughout most
of the spectrum. Assuming the existence of an inertial
range, one can obtain energy spectra from dimensional
analysis. In the region where &k > A, W = W,;, > W,,
thus leading to the well-known energy spectra for 2D
Navier-Stokes turbulence: W(k) o« k™5/3 for the inverse
and W(k) « k=3 for the direct cascade [14]. In the
region where k << A, the total energy is dominated by
internal energy, W = W, > W;,, and one obtains
W(k) « k='1/3 and W(k) o k5, respectively [11,15].
Thus we can expect that in the latter case a steep energy
spectrum impedes the formation of small-scale coherent
vortices.

We solve Eq. (1) numerically by using hyperviscosity
D = (=1)P*1p, V¥ (V2¢),p = 8, in order to confine
dissipation to small scales. White noise, random in time
and wave-number forcing F, is applied in a narrow shell
Ak around k;. The computations for various values of
A and k; have been performed using a pseudospectral
code with a square domain L X L, L = 277, periodic
boundary conditions, and resolution 256 X 256. For
intermittency diagnostics we use the potential vorticity
kurtosis (flatness), defined as F = (£%)/(£?)?, and the
kurtosis F4(r) of the potential vorticity increments £(x +
r) — £(x), where the potential vorticity is & = VZ¢ —
A2, () denotes an area average over x = (x,y), and
r = rX or r§. Both F and F4(r) are equal to 3 for a
Gaussian field, and increase when intermittency develops.

The fundamental difference between Navier-Stokes
flow and solutions to the Hasegawa-Mima equations
forced at ky > A is that the inverse energy cascade in the
latter case is shielded at £ = A. As the inverse cascade
transfers energy to k < A, the structure of (1) becomes

% - J(¢,V?¢p) — D — F =0, )
where 7 = r/A? is a rescaled (slower) time. This means
that the energy transfer to scales larger than p, ~ A™!
slows down. Freely decaying turbulence (F = 0) de-
scribed by Eq. (2), with initial spectra concentrated at
ko < A, was studied in [15]. We are particularly in-
terested in the driven-damped case when the forcing is
applied at ky > A (the relevant setup for the decaying
case would be when the narrow initial spectra are con-
centrated at ko > A), so that energy is transferred toward
the region k& << A. In this case the flow passes through
a transitional regime, when both terms, Vzd> and A%,
in Eq. (1) are important. Then we expect that coherence
vortex formation due to deformation radius effects will
reveal itself more clearly than in the Navier-Stokes equa-
tion, when the only length scale is the box size, and these
effects may well be overshadowed by the fast formation
of ultraviolet vortices if no special measures are under-
taken [7]. To take into account the effect of variable A,
we introduced the characteristic eddy turnover time as

TA(t) = U()"V2(1 + U,/Uy) (cf. Ref. [15]). We can
then define a new nondimensional time N,, which equals
the number of average eddy turnovers during the absolute
time ty: Ny = fg) dl/TA(l).

Before the maximum of the energy spectra reaches
the wave number k = O(A), there is no evidence of
the appearance of coherent vortices. The values of both
F and F4(r) remain close to their Gaussian value 3.
Later, the characteristic length scale p; ~ A~! interferes
with the upscale energy cascade and serves as a kind of
“shield” for it. Energy starts piling up at k = O(A\), thus
promoting the formation of long-lived coherent vortices.
Consequently, the number of vortices is determined by

FIG. 1. The potential vorticity, & = V?¢ — A%¢, field at
N, = 400 for the NS and the HM equations: (a) A = 0 (NS),
(b) A = 20, and (c) A = 40.
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the ratio A = L/p,. This is illustrated in Fig. 1, where
we plot the instantaneous potential vorticity fields at the
same nondimensional time N, = 400 (this corresponds
to about 12079, where 79 ~ 7/vms is a large-eddy
turnover time) for the cases with forcing at 47 < ky <
50 and A = 0 (NS), A = 20, A = 40. The values of
absolute time ¢ and kurtosis ‘F at that time were =
65, F =21 (A =0);tr =100, F =105 (A = 20); t =
210, F = 6.5 (A = 40).
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FIG. 2. Moments of potential vorticity increments S,(r) (dot-
ted), S4(r) (dashed), and Sg(r) (solid) normalized to their
maximum values and averaged over time N, € [0,400] for
@ A =0 (NS); (by A =20, p;, =0.32; and (c) A = 40,
pe = 0.16.
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FIG. 3. Trajectories of several vortices during AN, = 170 for
(a) the NS equation (three vortices), t € [100, 125], and (b) the
HM equation (nine vortices), A = 40, t € [100, 200].

The remarkable fact is that although the spectra shield is
permeable (i.e., energy transfer to k& < A does not vanish),
one can detect the appearance of order, i.e., in some
sense the formation of a “liquid” or even a quasicrystal
of vortices. For this purpose we consider the space-
time averaged even-order moments of potential vorticity
increments (structure functions),

San(r) = ([£(x + 1) — EX)"). 3)

The results for S5,(r) demonstrate the presence of long-
range order, characteristic of the quasicrystalline phaSe.
The moments S>(r), S4(r), and Sg(r), averaged over the
same interval of time N, € [0, 400] for the Navier-Stokes
equation (A = 0) and the Hasegawa-Mima equation with
A = 20 and A = 40, are plotted in Fig. 2. The value of
S»,(r) is practically constant for the Navier-Stokes equa-
tion [Fig. 2(a)], while for the Hasegawa-Mima equation
one can easily distinguish periodical oscillations. The
first peak of S,(r) with maxima at r slightly larger than
ps [Figs. 2(b) and 2(c)] denotes a shell of nearest vor-
tex neighbors, and there are oscillations representing more
distant neighbors. We emphasize that the observed vor-
tical structure looks like a quasicrystal, rather than liquid
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or dense gas [16]. In liquids the form factors (structure
functions) exhibit a few oscillations with a period rq (cor-
responding to the scale of interatomic potential), rapidly
decaying at r > ry. As one can see from Figs. 2(b) and
2(c), no such decay is observed in our simulations, leading
to the conclusion that the vortices form a quasicrystal. Al-
though the inverse energy cascade to k < A is suppressed,
it still exists, so vortices continue to coalesce. As a result,
the mean period of the quasilattice increases with time.
However, in contrast to their counterparts in Navier-Stokes
turbulence, the vortices resulting from Eq. (1) are screened
since the velocity field from a given vortex ¢ exponentially
decays on a scale A~! [15]. Consequently, the vortices
just oscillate on the order of the characteristic length scale,
so that the latticelike structure maintains for a long time.
The trajectories of several vortices for the Hasegawa-Mima
and the Navier-Stokes equations during the same interval
of time, AN, = 170, are plotted in Fig. 3.

We observe gradual steepening of the energy spectrum
as A increases while ks is kept the same. Time-averaged
energy spectra for 47 < ky < 50 and A = 10,20,40 are
plotted in Fig. 4. The results are well suited to the
expectation that the energy spectrum should steepen from
—5/3 for pure Navier-Stokes turbulence (when k& > A)
to —11/3 for the asymptotic case k << A. Knowledge of
these spectral exponents can be used as a starting point
for understanding the reasons for the appearance of the
long-range order discovered here. It is easy to show
that the renormalized perturbation expansion, based on the
spectra evaluated above, is infrared divergent; i.e., each
term depends on the infrared cutoff. It is possible that
the large correlation length, created as a result of vortex
crystallization, is a dynamic manifestation of the nontrivial
infrared properties of the system and is analogous to the
condensate state proposed by Polyakov in his conformal
theory of 2D turbulence [17]. In the case considered here,
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FIG. 4. Time-averaged (N, € [0,500]) energy spectra for
47 < ky < 50: A = 10 (dashed), A = 20 (dotted), and A = 40
(solid).

crystallization is a natural dynamic mechanism due to the
existence of a screening length p; ~ A~!. The effect of
the long-range order on the scaling exponents of the energy
spectra is an interesting subject which is beyond the scope
of this paper. Finally, we would like to note that when
ky << A coherent vortices, once they emerge, also reveal
a quasicrystalline structure. Detailed studies of this issue
will be given in a later paper.

To conclude, we have shown that the presence of a
charecteristic spatial scale in the Hasegawa-Mima equa-
tion leads to the formation of coherent vortices. The
steeper inertial range energy spectra, in comparison with
Navizr-Stokes turbulence (up to —11/3 and —5 for in-
verse and direct cascades, respectively), result in a smaller
influence of ultraviolet vortices on the formation of coher-
ent structures. In a transitional regime, when the energy
is transferred from k > A to k < A, the spectrum W (k)
indicates energy accumulation at k = O(A) as a result of
spectral “shielding.” This leads to the formation of co-
hererit vortices due to finite-size effects. These vortices
are less isolated and less movable in comparison with their
counrerparts in Navier-Stokes turbulence. The calculation
of moments of the potential vorticity increments shows
the appearance of the long-range order in the medium, in-
dicat.ng the formation of a vortical quasicrystal.
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FIG. 1. The potential vorticity, & = V¢ — A’¢, field at
N, = 400 for the NS and the HM equations: (a) A = 0 (NS),
(b) A = 20, and (¢) A = 40.



