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Electron-Energy and Angular-Distribution Theory for Low-Energy Ion-Atom Collisions
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We present the first ab initio calculations of electron-energy and angular distributions of saddle-

point and S-promotion electrons for ionization in proton-hydrogen atom collisions. The calculations
are based on outgoing wave Sturmian expansions in the frequency domain. They go beyond the usual

Born-Oppenheimer separation of electron and nuclei motion and display the "v/2" peaks and the

continuum capture cusps, missing in previous theories.

PACS numbers: 34.50.Fa

Measurements of the electron-energy and angular dis-
tributions of emitted electrons are widely used probes
of atomic dynamics. These probes are mainly used for
high-energy ion-atom collisions where two features [1],
namely, the binary encounter peak at electron velocities
equal to twice the projectile velocity and the continuum
capture cusp at electron velocities equal to the projectile
velocity, dominate in the spectrum. Analogous experi-
mental studies of low-energy collisions have been initi-
ated [2]. The main difference between electron spectra at
low- and high-energy is a small contribution or absence
of the binary encounter peak in the low-energy spectra.
Standard low-energy theories employing perturbed sta-
tionary states [3] usually cannot calculate energy and an-

gular distributions of electrons and especially cannot get
the continuum capture cusp that should be present in the
spectra. Previous calculations of total cross sections have
identified two ionization mechanisms [4,5] in low-energy
collisions, called T promotion and 5 promotion, but have
not been able to compute the corresponding electron dis-
tributions on an ab initio basis.

The electrons promoted to the continuum via a T pro-
motion are called "saddle-point" electrons. This reflects
the fact that the electrons are picked up in the saddle
region of the potential energy and promoted to the contin-
uum as the two charges recede from each other. The elec-
trons locate in space at the saddle point between the nuclei.
For equal charges, their velocities k are distributed around
one-half of the velocity of the incoming particles. Recent
calculations [6,7] obtain such distributions for saddle-point
electrons, but employ an adjustable parameter R;,„,where
adiabatic and diabatic wave functions are matched. One
objective of the present calculations is to eliminate this
arbitrary parameter.

The 5-promotion electrons are associated with classi-
cal, periodic, unstable trajectories, which represent elec-
tron motion along the axis joining the charges [8]. The
kinetic energy of electrons on these trajectories increases
when the charges approach each other. The increase of
kinetic energy leads to ionization even when the relative
velocity is insufficient to ionize electrons in a single bi-

nary collision. A simple analog of this mechanism is the
acceleration of elastic balls bouncing between two walls
that slowly approach each other. Present "hidden cross-
ing" theory [4,5] cannot compute the complete distribution
of these electrons. We will show that the 5 mechanism is
responsible for the continuum capture cusp, missing in pre-
vious theories.

This Letter provides the first ab initio calculations for
proton-hydrogen atom collisions that correlate specific
features of electron-energy and angular distributions with
the 5 and T mechanisms. Only calculations at impact pa-
rameters b = 0 are reported here since such calculations
are well adapted to identifying the specific features of both
ionization mechanisms. Nevertheless, the reported ap-
proach, which goes beyond the usual Born-Oppenheimer
separation of electron and nuclei motions, can be used for
other collision systems and for impact parameters b 4 0.

The standard formula for the differential ionization
amplitude [9]

is employed, but the new representation of the initial
and final states vectors is used. In Eq. (1) tft'"(t, r) and
P""'(t, r) are solutions of the time-dependent Schrodinger
equation

i —H(R(t), r) P(t, r) = 0,
Bt

(2)

with initial conditions given at t ~ —~ and t ~ ~, re-
spectively, and P'"(t, r) = P'"(—t, —r)'. The last equal-
ity in Eq. (1) allows us to define the initial conditions
for both initial and final states at t ~ —~ and consider
only the first part of the collision —~ & t ~ 0. The ini-
tial condition is associated with an electron that is in a
bound atomic state P, (r ) with an eigenenergy E, In.
the center-of-mass reference frame we have

Pin(t r) . P (r )e
—iE, t iv ru/2 i v t/8—

where r, = lr —R/2l, R is the internuclear distance,
and v is the incident velocity. The incoming part of the
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1
V(q) =

/q
—R/2/

1

Iq + R/2i)'

1
Hp(q) = ——7'q, (6)

and R(~) = 1/v ~. It is important to note that the Hamil-
tonian in Eq. (6) depends on r only through the factor R(r)
multiplying the potential V(q). The wave functions P(t, r)
and y (r, q) are connected by the transformation [10]

. 1 dR(r)/dr
q (r, q) = R'i2(~) exp i ——

2 R(~)
& 0[—R(.)/v, R(.)q] (7)

According to Eq. (7), the incoming plane-wave part of the
final ionization state i/rk(t, r) is transformed to a Gaussian
wave packet, and the wave function that corresponds to the
final ionization state is given by

final ionization state with an electron of a wave vector k
is represented explicitly

Pk" (t, r) = (2') i exp(ir k —ik t/2) + i/rk'"(t, r),
(4)

with the initial condition Pk"'(t, r) - 0 as t ~ —~.
Since only incoming waves are needed in Eq. (1) the
superscript "in" is omitted.

Introducing new scaled coordinate variables q =
r/R(t) and a new time variable d~ = dt/R (t), where
R(t) = —vt Fo.r t ~ 0 and b = 0 we obtain the time-
dependent Schrodinger equation in a (r, q) space [10]:

—H (q) —R()V(q) ~(, q) =0,
B7

where

,iz exp(ig2or ~q + k/v~)

1
Tk, i

'U
dorg2or dr C;(or, r)

X [Ck(or, r) —C„(or, —r)]. (13)

Note that Tk; in Eq. (13) is determined by the solution of
the Schrodinger equation [Eq. (10)] at or ~ 0; however,
as we will see, we should know the solution at co & 0 to
satisfy the initial conditions (3) and (4).

To calculate C;(or, q) and Ck (or, q) we expand the wave
function y; (or, q) that corresponds to the initial bound state
and the wave function gk" (or, q) that corresponds to the
scattering part of the final ionization state in terms of a
discrete set of orthonormal Sturmian basis functions,

y;(or, q) = QS„(or;q)B,', (or)

+ xk"'(~. q)

When ~ ~ ~, corresponding to t ~ 0, the integra-
tion over or in Eq. (9) and the transformation (7) give
us that P;(O, r) = vC;(v r /2, r) and Pk" (O, r) =
vCk(v r /2, r), where C;(or, q) and Ck(or, q) are deter-
mined by the asymptotic behavior of the wave functions
at large q, as follows:

g, (or, q) = C;(or, q)q 'e' '"~

and gk"'(or, q) = Ck(or, q)q 'e' ~. (12)

Then the transition amplitude to the continuum in Eq. (1)
is given by

k
pk(r, q) = (2~vr) i exp q +-

2v V

and y„""(or,q) = g S„(or;q)B„"(or) . (14)

+ ek"'(r, q), (g)
with the initial condition pk" (r, q): 0 as r ~ 0.
In this representation the wave functions p;(r, q) and

pk (r, q) are Galilean invariant. In standard theories
P(r, q) is expanded in fixed-nucleus basis states, i.e.,

eigenstates of Ho + RV. These states cannot represent
the ionization spectrum correctly and the continuum
capture cusp is always absent in such calculations.

To incorporate dynamic variations of R(r) we write the
wave function as the Fourier transform (Solov'ev [11]used
the Laplace transformation in (t, r) space),

p(~, q) = (—2~vi) de exp( —i o)r~r( oqr),

and consider the Schrodinger equation in a (or, q) space,
1

i [Hp(q) —or] ——V(q) g(or, q) = 0. (10)
(9M V

In the (or, q) space, the wave function gk(or, q) that
corresponds to the final continuum state becomes

The positive energy Sturmian functions 5„(or;q) =
(q~S„(or)) are defined by [Hp(q) + p„(or) V(q)] &&

5„(or;q) = AS„(or; q) with outgoing wave boundary
conditions B[lnS„(or)]/Bq: i/2or, as q ~ ~ [12]. In
Eq. (14) p, (or) are the Sturmian eigenvalues and S„(or;q)
are Sturmian eigenfunctions, normalized according to
(5„(or)~ —V[5„(or)) = 6„, , where (a~b) = f a(q) X
b(q)d q Note that w. e do not complex conjugate a(q).
For or real and negative the functions S„(or;q) form a
complete set. When co ) 0 the set is complete in the
space of outgoing waves needed for Sturmian expan-
sions of scattered waves yk'"(or, q) and g;(or, q). Our
calculations reveal two different subsets of Sturmians
related to 5 and T promotions. The Sturmians associated
with the 5 promotion are defined only for cu ) 0 and

p„(0) 4 0. In contrast the T-promotion Sturmians exist
for all or and p, (0) = 0. The coupling matrix elements
M, , (or) = (5„(or)) —V~AS, (or)/Bor) between n and
n' = n + 1 have pole singularities at cu = 0 that are
natural for Sturmian representations. All other coupling
matrix elements are regular and small.
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—i
" + v P M„„(cu)A,', (ru) = 0,

A„'(cu)

p» ru n'Wn

(15)

v ' —i " + v P M„„(cu)A„",(ru)
BA,"(cu) A„"(~u)

ci co p» cu n'Wn

Introducing A,'(~u) = B'„(ru)p„(cu) and A„"(cu) =
B,"(ru)p„(ru) we obtain a set of coupled equations

clA„(cu)
v

20

l &2' ij

with initial conditions A„'(cu): i e—xp( Qru/—F.,/v) 6;„
and A„"(co):0, as ~u ~ —~. We first truncate the
coupled equations (15) and (16) at N = 10 and solve them
to find the coefficients A„(cu) and A,"(cu). Solution of these
equations gives the values of A„(or) and A„"(~u) for the T
Sturmians at cu = 0. The coefficients A„(cu) and A„"(ru)
for the 5 Sturmians equal zero at co = 0. The values
at cu = 0 are used as starting values to solved Eqs. (15)
and (16) for cu ) 0. Then we construct C, (cu, q) and
Ck(cu, q) using Pade summation [13]. The sequence of
Pade approximants converges fairly rapidly. For v = 0.4,
one Sturmian gives accurate results (within 10%).

Two spectra of ejected electrons associated with two
different kinds of Sturmians are displayed in Fig. 1. Fig-
ure 1(a) shows a spectrum related to the S promotion for
v = 0.4 a.u. The spectrum has two cusp peaks at k~ = 0
and k~~

= ~ v/2 in the center-of-mass frame. That the S-
promotion mechanism gives cusp electrons can be under-
stood from the corresponding classical trajectories given
by Abramov, Ovchinnikov, and Solov'ev [8]. These au-
thors show that the 5-promotion classical orbits circle
both protons an infinite number of times. Since the elec-
tron spends a large fraction of its time near the protons,
the electron distribution peaks at k = ~v/2. The en-

ergy distribution of the fast electrons is exponential. Fig-
ure 1(b) shows a spectrum related to the T promotion of
the 2p~ state for v = 0.4 a.u. The two peaks at zero
center-of-mass velocity are associated with the ~ sym-
metry of the To~ promotion. This agrees with calcula-
tions reported in Ref. [2]. The distribution in Fig. 1(b)
corresponds to R;« = 110 a.u. in good agreement with

R;,„=50/v used in Ref. [2].
Our formulation in terms of outgoing wave Sturrnian

eigenfunctions presents a complete ab initio theory of
ionization in low-energy ion-atom collisions. First cal-
culations show that two previously identified ionization
mechanisms give dramatically different electron distribu-
tions. The T-promotion mechanism gives a peak at the
center-of-mass velocity, equal to v/2 in lab frame, as in
earlier calculations, but without arbitrary adjustable pa-
rameters. The 5-promotion mechanism gives rise to two
cusps where electron velocities match the ion velocities.
These calculations show how measured electron distribu-
tions may be interpreted in terms of T and 5 mechanisms.

.75

FIG. 1. The differential ionization probabilities ~Tk;~2 at v =
0.4 a.u. and b = 0 (a) for S promotion, (b) for T promotion.

If measurements of the electron-energy and angular distri-
butions of emitted electrons could be performed for small
impact parameters b, then these calculations for b = 0
can be quantitatively compared with spectra presented in

Fig. 1. However, measurements of cross sections inte-
grated over impact parameters should still show the fea-
ture described here.
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