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Intrinsic vs Laboratory Frame Description of the Deformed Nucleus 48Cr
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The collective yrast band of the nucleus Cr is studied using the spherical shell model and
the Hartree-Fock-Bogoliubov (HFB) method. Both approaches produce basically the same axially
symmetric intrinsic state up to the —accurately reproduced —observed backbending. Agreement
between both calculations extends to most observables. The only significant discrepancy comes from
the static moments of inertia and can be attributed to the need of a more refined treatment of pairing
correlations in the HFB calculation.

PACS numbers: 21.10.Re, 21.60.Cs, 21.60.Jz

The study of the collective behavior of deformed nuclei
is a classical problem in nuclear physics. Traditionally,
mean field descriptions in the intrinsic frame have been
favored, as they take advantage naturally of the sponta-
neous breakdown of rotational symmetry. The price to
pay for the gain in physical insight is the loss of angular
momentum as a good quantum number.

In the laboratory frame description, as provided by
spherical shell model calculations (SM), angular momen-
tum is conserved but the physical insight, associated with
the existence of an intrinsic state, is lost, except in the
very rare cases where Elliott's SU(3) symmetry [1] op-
erates. Furthermore, the approach suffers from numeri-
cal limitations. Hence, so far, it has been implemented
mostly in regions such as the p and sd shells where the
number of active particles is too small for collective fea-
tures to become dominant. Nonetheless, there are a few
nuclei —such as Ne and Mg —that are well repro-
duced by the SM calculations and do exhibit collective
properties, whose origin can be traced to the approximate
validity of the SU(3) symmetry, for which the relationship
between the intrinsic and laboratory frame descriptions is
well understood.

In regions where the SU(3) symmetry is poorly re-
spected, as in the pf shell [2], the study of potentially
good "rotors" was impaired by lack of experimental evi-
dence, and by the difficulty of an exact SM treatment
beyond five active particles. The situation has changed
through recent measurements [3] demonstrating that Cr
is a good rotor up to spin J = 10 where the yrast band
bends back. This behavior is reminiscent of the situation
in much heavier deformed nuclei. Simultaneously, full

pf calculations [4] have become available, which repro-
duce in detail the observed properties of A = 48 isobars,
and, in particular, those of Cr.

Therefore, this nucleus provides a unique testing
ground to compare the SM (laboratory frame) description
of permanent deformation with cranked Hartree-Fock-
Bogoliubov (CHFB) calculations [5] with the finite range
density dependent Gogny force [6], which represent one

of the best (self-consistent) formulations of the intrinsic
frame approach.

From the comparison it should be possible to obtain a
better understanding of the intrinsic structure of the SM
solutions, which in turn may indicate in what sense the
CHFB description falls short of an exact one.

Computational procedures. —In the spherical shell
model (SM) Cr is described in a Ohio space, i.e., eight
particles are allowed to occupy all the states available in
the pf shell (1963461 states). The effective interaction is
given by a minimally modified version of the Kuo-Brown
G matrix [7] denoted KB3 in [4]. The single particle ener-
gies are taken from the 'Ca experimental spectrum. The
effect of core polarization on the quadrupole properties is
taken into account by the use of effective charges q
1.5, q, = 0.5. The Hamiltonian is treated by the Lanczos
method and diagonalized by the code ANTOINE [8].

In the intrinsic frame calculations we have used the
self-consistent CHFB method with the density dependent
Gogny force. The CHFB equations determining the
mean field intrinsic state ~P„) are obtained by imposing
the condition that the mean value of the Routhian be
stationary against small variations of the intrinsic state,
i.e.,

6(@~~H —co J~ —AjvN —AzZ~@~) = 0. (1)

The Lagrange multipliers cu, A~, and Az are determined
by the usual angular momentum and particle number
constraints (P )J,($„)= QI(I + 1), (@ (N(P ) = N,
and (@„(Z~P ) = Z.

The HFB wave functions have been expanded in a
triaxial harmonic oscillator basis ~n, nYn, ) with different
oscillator lengths. Ten oscillator shells are included
in order to ensure the convergence of the mean field
results. The parameters of the Gogny force used in this
calculation were adjusted more than 10 years ago to
reproduce ground state bulk properties of nuclei (DS1
set [9]). Without further changes, this force has proven
capable of describing successfully many phenomena, and,
in particular, high spin behavior [5].
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In order to understand more qualitatively the physics
involved and to make contact with the shell model
calculations we have computed the following quantities
in a spherical representation of the basis: The "fractional
shell occupancy"

1
m=J

v(n, i,j) = . g (0 lent, ment, mI@ ),
2J + 1

the "shell contribution to (J )"

tJz(n, I, J) = (Jx)(ntjm), (nIjm')(Pcu lcntjmcntjm'l0 )
m, m'

and the "shell contribution to the quadrupole moment"

Q2o(n, l,j;n', l',j ')

t
(q2o)(njlm), (n'I'j'm')(0 I cnIJmcn'Ij''m'I @co) ~ (4)

m, m'

In the above formulas ~@ ) is the intrinsic CHFB wave

function expressed in the triaxial basis and c„~J are the
operators creating a particle in the harmonic oscillator
orbit ~nljm) with oscillator length bo = (b, b~b, )'i . In
order to obtain these quantities the triaxial basis has
been expanded in a spherical one following a procedure
similar to that of Ref. [10]. As the triaxial basis has, in
general, different oscillator lengths the expansion contains
in principle an infinite number of terms. In our case, an
efficient truncation is obtained by allowing the spherical
basis to contain four major shells beyond those in the
triaxial basis. The convergence of the truncation has been
checked by comparing g„t~(2j + 1)v(nlj ), g, &~j (nlj ),
and +„0„t, q2o(nlj; n'l'j') with (N), (J,), and (Q2o),
respectively. The differences are typically of the order
of 0.01%.

Energetics. —In Fig. 1 the SM, CHFB, and experimen-
tal gamma ray energies E~(J) = E(J) —E(J —2) are
plotted as a function of the angular momentum J. The
SM results nicely reproduce the experiment including the
backbending seen at J = 10. On the other hand, the mean
field values of F~ follow the same trend as the experi-
mental and SM ones but they are shifted downwards by
=0.5 MeV. This means that the mean field dynamic mo-
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ment of inertia [Jt21(J) = 4/AE~] is similar to the SM
and experimental ones although the static moment of in-
ertia [Jt'1(J) = (2J —I)/Ez] is on the average a factor
of 1.5 bigger. (The origin of this discrepancy will be ex-
plained later. )

Quadrupole properties —
T. he striking similarity be-

tween the SM and CHFB results up to the backbend can
be gathered from the lower part of Fig. 2, in which the in-
trinsic quadrupole moment is plotted along the yrast band.
The SM values are extracted from the B(E2) values, assum-
ing K = 0. The existence of an intrinsic state common to
the members of the band can be guessed directly by calcu-
lating the contribution of a given configuration to each SM
wave function (i.e., by summing the square of the ampli-
tudes of all basic states having the same number of parti-
cles in each subshell). These contributions are practically
identical in all the eigenstates up to J = 10. At higher
spins rapid changes occur, and the configuration in which
all the particles are in the f7y2 orbit becomes increasingly
dominant. It is clear that the intrinsic state is becoming J
dependent at the backbending region, and the discrepancies
in Fig. 2 beyond J = 10 suggest that it is no longer possi-
ble to extract an intrinsic Qo from the SM results, assuming
a K = 0 band. In the upper part of the figure an alterna-
tive is proposed, by comparing the B(E2) values, obtained
directly in the SM case with those derived from CHFB
by applying the generalization of the rotational model pre-
scription to small triaxialities (see [5]). The agreement is
again nearly perfect up to J = 10 but then deteriorates, al-
though not as much as in the lower figure.

In assessing the significance of these results we should
keep in mind that they are in both cases (rotational)
model dependent. They indicate that the model is as good
as exact up to the backbend, and then breaks down-
at least in the standard implementation proposed here.
They certainly do not indicate that the SM and CHFB
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FIG. 1. Yrast energies F~ = E(J) —E(J —2). FIG. 2. Comparing B(E2) and Qo trends.
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FIG. 3. Orbital occupancies.

descriptions are becoming different. On the contrary, we
shall find evidence of their closeness.

Orbital occupancies. In Fig. 3 are plotted the frac-
tional occupancies of the spherical orbits in the CHFB
solution [Eq. (2)] (upper part) and in the SM one (lower
part). In all cases they are quite constant up to the back-
bending where the f7tz orbit becomes rapidly the only
relevant one.

However, the f7tz occupancy is always the largest by far,
and in the CHFB case the contribution j,( f7tz) to (J,) in
Eq. (3) is always greater than 99%. It means that the fztz
orbit plays a major part in the two yrast regimes: below
backbend as the major contributor to the deformed wave
functions, and above through the f7tz configuration that
becomes increasingly dominant. This picture is consistent
with the usual idea that the backbend is associated with
the alignment of fztz particles, which are also massively
present in the collective regime at low spin.

Magnetic properties. In Fig. 4 we present the CHFB
and SM results for the gyromagnetic factor g. In both
cases and up to the backbending zone they are close to
the rotational limit gR = Z/A = 0.50. For a pure f7tz
configuration the value of g is also constant and equal to

0.55, explaining the slight increase in g as we enter the
backbending region where these configurations become
dominant.

Pairing properties. From all we have said, it follows
that the SM and CHFB results are basically the same, ex-
cept for a difference in the static moment of inertia. Its
origin can be understood by redoing the SM calculations
reducing the JT = 01 two-body matrix elements involv-
ing orbits r and I, according to

W„,'„-. W„",'„+ 0.165$(j„+ 1/2) ( j, + 1/2), (5)
which amounts to subtracting a standard pairing term

( j,. is the angular momentum of orbit r) The .resulting
F'~ pattern for an exact calculation with the modified
interaction is shown as SM(E) in Fig. 5. To gain further
insight we have also calculated in SM(P) the energies by
taking expectation values of the modified interaction (5)
using the SM wave functions obtained with KB3. [The
coefficient 0.165 was chosen —somewhat arbitrarily —to
make the first point coincide for CHFB and SM(P).]
The conclusion is as follows: Although the energetics
of the yrast band are strongly affected by the pairing
modifications, the other properties are not, since the wave
functions change little. (The overlaps (SM(E), J~SM, J)
exceed 0.97 in all cases. )

As the pairing properties of the Gogny force were
adjusted in a strong correlation regime (odd-even mass
differences in the tin isotopes) the large static moments
of inertia obtained in the CHFB calculations should be
attributed to an inadequate treatment of pairing effects in
a weak correlation regime rather than to the force itself:
Exploratory tests using the Lipkin-Nogami approach on
top of the CHFB scheme show a substantial reduction
of the moment of inertia, making it much closer to the
experimental data. The other intrinsic properties remain
almost unaffected.

4"Cr as axial rotor —It has be.en recently argued [11]
that the building blocks of wave functions describing good
rotors are constructed by allowing particles to move in
spaces defined by 5j = 2 sequences of major shell orbits,
starting on the one with the largest j. For these blocks,
an approximate form of SU(3) symmetry is valid [quasi-
SU(3)]. One of the predictions of this model is that 4sCr
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FIG. 4. Gyromagnetic ratios.
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FIG. 6. The CHFB deformation parameters.

is an axially symmetric rotor, contrary to what happens to
its counterpart in the sd shell, Mg, that obeys Elliott's
SU(3) and is triaxial. Experimentally no second 2+ state
is found in Cr at low excitation energy, while in Mg
the second 2 is degenerate with the yrast 4+. In Fig. 6
we present the values of the deformation parameters p
and y coming from the CHFB calculation.

At first, p stays constant at p = 0.3, while y = 0,
which means that Cr behaves indeed as an axial rotor
up to the backbend. Above it, as p decreases fast and the
system moves to a spherical regime making it difficult to
interpret in a simple way the y behavior.

Effective charges —Finally, . we can separate from the
total quadrupole moment Q20 in CHFB, the valence con-
tribution Q20pf(HO) by summing q20(n, l, j;n', l', j') in

Eq. (4) over the Of and 1 p orbits, i.e., by identifying the
valence orbits with harmonic oscillator ones. The ratio

Q20/Q20pf (HO) = 1.99(J = 0), . . . , 1.83(J = 14)

is quite consistent with the isoscalar effective charge used
in the SM calculations q, + q = 2.

Alternatively, we can define Q20pf(HF) by summing
over all the values of 1, j and l', j' corresponding to the

pf shell, which amounts to using spherical HF orbits.
This choice naturally reduces the effective charges, but
they remain quite constant since

Q20/Q20pf(HF) = 1.70(J = 0), . . . , 1.63(J = 14).

In conclusion, the quantitative equivalence of the SM
and CHFB descriptions has two direct and welcome
consequences: (i) It suggests that the Gogny force must
be reasonably close to the realistic ones, consistent with
NN data and known to yield high quality spectroscopy
once their bad monopole properties are corrected. (ii) It
confirms the validity of the SM choice of a model space
restricted to orbits in the vicinity of the Fermi level.
Clearly there is much to be gained by combining the
simplicity and rigor of CHFB with the SM precision and
generality.
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