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It has been recently suggested that the nonsymmetric gravitational theory (NGT) is free of black

holes. Here we study the linear version of NGT. We find that even with spherical symmetry the skew
part of the metric is generally nonstatic. In addition, if the skew field is initially regular, it will remain

regular everywhere and, in particular, at the horizon.

Therefore, in the fully nonlinear theory, if the

initial skew field is sufficiently small, the formation of a black hole is to be anticipated.

PACS numbers: 04.50.+h, 04.70.Bw

General relativity (GR) is a theory of gravitation, in
which gravity is manifested by the curvature of spacetime,
which is described by Riemannian geometry [1]. Field
theories which use non-Riemannian geometry have been
formulated by Einstein [2], Schrédinger [3], Einstein and
Straus [4], and more recently by Moffat [5,6] and Klotz
[7]. In non-Riemannian geometry the metric tensor g,
is not assumed to be symmetrical in its two indices.
This property complicates the geometry considerably, and
induces torsion in spacetime. Einstein [2] formulated a
nonsymmetric field theory as part of his quest for a unified
field theory, namely, a unified theory of classical gravity
and electromagnetism.

Recently, there has been growing interest in nonsym-
metric gravitation theory (NGT) for motivations different
than Einstein’s. Cornish and Moffat (CM) [8,9] studied
a class of exact static spherically symmetric solutions to
the NGT field equations. This class depends on the two
parameters m and s, where m is the source’s mass, and
s determines the strength of the skew part of the met-
ric tensor (that is, at large distance, r > m, this skew
part is proportional to s). In all these solutions, there are
no trapped surfaces, and consequently there are no black
holes. Based on these static solutions, CM suggested that
NGT was free of black holes (and, thereof, of spacetime
singularities) [8—10].

It is remarkable that even for arbitrarily small s the
static skew field “destroys” the horizon. That is, even
if the skew field (i.e., the skew part of the metric
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tensor) is arbitrarily small at » >> m, in the static solution
it grows in an uncontrolled way on the approach to
r = 2m—until it becomes so strong that it modifies
the geometry dramatically and prevents the formation of
trapped surfaces. This behavior is nicely demonstrated
in the context of linearized NGT. In linearized NGT,
the skew field is regarded as an infinitesimally small
perturbation over the standard, symmetric metric. The
linear analog of the model analyzed by CM is that of a
static, spherically symmetric, linearized skew field on a
Schwarzschild background. One then finds (see below)
that the linearized skew field diverges at r = 2m. This
linear divergence indicates the effectiveness of the skew
field, and its ability to “destroy” the black hole, in the
context of fully nonlinear NGT.

Of course, before making any definitive statements
about the existence or nonexistence of black holes in
NGT, one must address the following question: Is the
above mentioned phenomenon (the absence of a black
hole in the static spherically symmetric solutions) a
generic characteristic of NGT or a result of the symmetry
(staticity) imposed? Answering this question requires an
investigation of the nature of the generic dynamical NGT
solutions. This is an extremely hard task, because NGT
is much more complicated than GR (and, of course, its
general dynamic solution is as yet unknown). Fortunately,
it is possible to translate the above question to the context
of linearized NGT: Is the divergence of the linearized
skew field at the Schwarzschild radius a generic feature

© 1995 The American Physical Society 2455



VOLUME 75, NUMBER 13

PHYSICAL REVIEW LETTERS

25 SEPTEMBER 1995

of linearized NGT or a consequence of the assumption
of staticity (of the skew field)? If the generic linearized
solution was divergent at the background’s horizon, an
important dynamical effect would be anticipated in the
fully nonlinear NGT. On the other hand, if the linearized
skew field is found to be generically regular at the
horizon, the situation is different: Then (at least for a
sufficiently small initial skew field) the linearized solution
is likely to be a good approximation to the full theory,
and no drastic effects are expected to occur at the horizon.
In such a case, we should expect a gravitational collapse
to proceed pretty much like in GR—and, in particular, a
formation of a black hole is to be anticipated.

The goal of this Letter is to address the above question.
We shall study the dynamical behavior of a linearized
skew field on a GR background and apply this formalism
to a spherically symmetric skew field on a Schwarzschild
background. We shall show that the linearized equation
possesses a well-posed initial-value formulation. An
important result is that, even in spherical symmetry, the
skew field need not be static. Moreover, for regular initial
data on some spacelike hypersurface 3, no divergence
occurs anywhere in the entire domain of dependence. In
particular, the dynamics of the skew field at the horizon
is perfectly regular. Our conclusion is, therefore, that if
the initial skew field is sufficiently small, a black hole
is likely to form in gravitational collapse—just like in
standard GR.

The vacuum field equations of NGT are

8uvo = &ovlly = 8upll, =0, (M
(v=eg) =0, @)

R(aﬁ) = 0, (3)

Riaply + Rigyla T Riyalp =0, 4)

where g, is the nonsymmetric metric tensor, g is its
determinant, R,pg is the generalized Ricci tensor [see
Eq. (8) below], and ng is the nonsymmetric affine con-
nection. The inverse metric g#” is defined by g*" g0 =
8" G = 8.

We now consider the linearized NGT. Namely, we
assume that the skew part of the metric tensor, hg,,
is a small perturbation over the symmetric GR metric,
and develop the field equation to first order in this per-
turbation. Denoting all background fields by a caret,
we write g, = 8y + huw, Fﬁu = T4, + DLy, and
Rap = IAQC,B + Qu.p. Here g, is a standard, symmetric
GR metric and f‘fw and Ra g are the standard connection
and Ricci tensor, respectively, associated with this back-
ground metric. Note the symmetry features of the various
entities: By definition, we have g(u,) = §uv» IA“{;,,) =
['fiv, Riap) = Rap, and hpu,) = hy,,. We shall show
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below that D} = Dj, and Qap] = Qap. The back-
ground metric g, is taken to be vacuum, i.e., R, = 0.

From the metricity equation (1) we find, to the linear
order in the skew field, that

ngDgy + gozpD;),B = haB:y’ (&)

where a semicolon denotes covariant differentiation with
respect to the GR background g,,. Solving Eq. (5) we
find that

o o 1 ~ 0
Diy = Digy) = s 8 E(hﬁv:ﬁ + hpsy + hpys). (6)
To linear order we have
(We use the background metric 2,p to
raise or lower indices.) Equation (2) is thus reduced to

Next we linearize Eq. (2).
g[,U«V] = — MV

hl = =0, %

The generalized (Hermitianized) Ricci tensor is defined
in NGT by [2]

1
. 14 - P P
Rap = Tapp = 5 (Fmp),ﬁ + F(pm,a)

— T8, T + Topll,, . (8)

act p

Expanding this equation to the first order in the perturba-
tion, we find that

Qup = Qlapl = Dipip » 9)

or, equivalently,

1 A
Opy = Eg ﬁ(hﬁy;ﬁa * hpsiya + hﬂ%ﬁ”)' (10)

Recalling the noncommutivity of covariant derivatives,
we rewrite Eq. (10) as

1 sarn & A
Opy = = &° (ht?pvaBa + hpngﬁa

2
+ hppR s ye + hpsR sya)
+ L(h“ + hf ey 8 hpyisa) (11)
2 \" viaB Biay T & Npyida)
where Rﬁ Ba 18 the background Riemann curvature tensor.

In view of R,g = 0 and Eq. (7), Eq. (11) becomes

1

Oy = 5 & hayse + 28 hs,Rlupy . (12)

Linearizing Egs. (3) and (4), one finds that the former is
automatically satisfied by Qg,, and Eq. (4) reduces to

Qa,B,’y + an,B + QBy,a =0. (13)
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Equation (13) [with the identity (12)] together with the
constraint (7) are the linearized vacuum NGT equations
for hy,.

Our analysis so far was quite generic: We did not
make any assumptions about any symmetry of either
8uv or hy,. We shall now restrict our attention to
spherical symmetry. Namely, we shall take g,, to be
Schwarzschild, and h,, to be spherically symmetric.
We start from the spherically symmetric metric used by
CM [see, e.g., Eq. (5) in Ref. [8]], and allow the three
nontrivial metric functions—namely, «, 7y, and f—to
depend on both r and #:

v(r,t) 0 0 0

B 0 —a(rt) 0 0
Epr = 0 0 —r2 f(r,t)sing
0 0 —f(r,t)sind —r?sin’6

(14)

(The most general spherically symmetric metric may also
include a nonzero metric function g, [11]. Here we
follow CM and restrict our attention to the simpler case,
gr] = 0.) We now linearize the field equations in f.
The zeroth-order equation R,L,, = 0 immediately implies
that the background metric is the Schwarzschild solution:
vy =1/a =1 — 2m/r, so we only need to calculate
f. Equation (7) is automatically satisfied by the skew
part of (14), and we only need to consider Eq. (13). A
straightforward calculation, based on Eq. (12), yields that
the only nonvanishing components of Q,,, are

" ;
Oop = —Q¢o = |:E<§ - %)
A Wi _zfa’}ina’

ar 2 a? a’lr
(15)

where a dot and a prime denote partial differentiation
with respect to ¢ and r, correspondingly. [We have also
derived this equation directly, by calculating R, from the
(time-dependent) metric (14) in the fully nonlinear NGT,
and then linearizing it in f.] From Eq. (13) it is obvious
that Qgyy cannot depend on r or f. The most general
solution of this equation is, therefore, Qg4 = —csind,
where ¢ is some real constant (see also Ref. [12]). It can
be shown, however, that for ¢ # 0 the spacetime is not
asymptotically Minkowski [13]. We shall therefore focus
our attention here on the case ¢ = 0. The field equation
for f will thus be

1 f f// f/ 1 j'/al fal
— = -+ =+ = -2 =0. (
Z(y a ar 2 a? 2a2r 0. (16)

In the static limit, i.e., when f is taken to vanish,
we recover from Eq. (16) the linear analog of the CM
equation for f [see, in particular, Eq. (2.4) of Ref. [14]].

One can easily verify that, in the static limit, the linearized
f diverges logarithmically at » = 2m. This is just the
linear analog of the behavior found by CM. Here,
however, we are in a position to study the dynamical
content of the theory.

Equation (16) is a linear, second-order, hyperbolic, par-
tial differential equation, and, consequently, it possesses a
well-posed initial-value formulation. Thus, given f and
f on some spacelike surface, standard theorems guarantee
the existence and uniqueness of a regular solution f(r, )
throughout the domain of dependence (or, more precisely,
as long as the background metric tensor is regular). This,
by itself, proves that f does not satisfy a generalized
Birkhoff’s theorem [15]. Namely, despite the spherical
symmetry, f is generically dynamic (for one is allowed to
choose nonzero initial f).

The next stage of our analysis is to study the behav-
ior of f at the horizon. The Schwarzschild coordinates
are unsuitable for that purpose as they go singular at
r = 2m. We therefore need to transform to some other
spherical coordinates (e.g., Kruskal and Szekeres [16]).
This transformation is most easily done by expressing
Eq. (16) in a covariant form. Defining a new function
k(r,t) = f(r,1)/r?, one readily finds that Eq. (16) re-
duces to

2
g#vk;ﬂu + ﬁk = 0. 17

Take now any coordinates that cover the Schwarzschild
manifold (such as Kruskal and Szekeres) and reexpress
Eq. (17) in terms of partial derivatives. The resultant
equation is obviously a linear, second-order, hyperbolic,
partial differential equation—throughout the spacetime
(with coefficients which are regular everywhere). There-
fore, for any partial Cauchy surface 2 in the analytically
extended Schwarzschild spacetime, and for any choice of
regular k (or f) and its time derivative on it, the existence
and uniqueness of a regular solution k(r,t) [or f(r,?)]
throughout D*(2) is guaranteed. In particular, f is regu-
lar at the horizon.

We have found that if the linearized skew function f
is initially regular, it will remain regular throughout the
domain of dependence (except possibly at » = 0) and,
in particular, at the event horizon. Note that there is
no conflict between this result and the divergence of the
static linearized skew field at r = 2m. From the initial-
value point of view, the linearized static solution fails
to be regular at » = 2m simply because it evolved from
singular initial data. (That is, in view of the staticity, the
divergence at r = 2m must have existed already on the
initial slice.) For any regular initial data, however, the
skew field will remain regular at the horizon.

Let us now discuss the implication of the above re-
sults to nonlinear NGT. Generally, one expects a linear
perturbation analysis to be a good approximation to the
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original nonlinear theory as long as the perturbation is
small. If, however, the linearized perturbation develops a
divergence at some point, this may break the validity of
the linear approximation. Indeed, the divergence of the
static linearized skew field at the horizon indicates strong
nonlinear effects, which completely modify the GR ge-
ometry (at r = 2m). We have found, however, that if
the initial data for the linear case are regular, no diver-
gence will occur. We therefore arrive at the following
conclusion regarding the behavior of the fully nonlinear
system: If the skew function f and its time derivative
are regular and sufficiently small at the initial moment,
they are likely to remain small, and dynamically unim-
portant, in the neighborhood of r = 2m. In particular, a
black hole is expected to form—pretty much like in GR.
(Important dynamical effects are possible, however, near
r = 0.) Again, there is no conflict between this result and
the strong nonlinear effect found by CM in the static case,
because in the latter the initial skew field is necessarily
strong near r = 2m.

Strictly speaking, the above considerations are re-
stricted to the vacuum case, i.e., to the analytically ex-
tended Schwarzschild spacetime. One may therefore be
concerned about the validity of our conclusion to the sit-
uation of gravitational collapse (in spherically symmetric
gravitational collapse matter must always be involved).
The present authors regard this as a technical difficulty
rather than an inherent one. Although our regularity ar-
guments are not strictly valid in the presence of matter, in
view of the above analysis there is no positive indication
whatsoever for any anomalous behavior of the skew field
at the horizon (given regular and sufficiently small initial
data).

In addition, let us imagine a nonspherical GR back-
ground 2, describing a dynamical gravitational collapse
of pure gravitational radiation (which in GR produces
a black hole [17]). Consider now a small (linearized)
skew perturbation h,pg over this background. (We as-
sume that the initial data for the skew field are given on
an initial hypersurface prior to the formation of the black
hole.) The vacuum field equations are certainly valid in
that case. Although our above initial-value analysis is re-
stricted to spherical symmetry, it is possible to extend it to
the generic (nonspherical) case [18]. This general analy-
sis is beyond the scope of the present Letter, so we shall
just outline it briefly. In the generic case, one can intro-
duce a “vector-potential” A, (A, is closely related to the
vector W, of Ref. [5]), such that Q,, = A[, ). [This
automatically solves Eq. (13).] Using the Lorentz gauge,
A'M;M = 0, one can derive a system of second-order linear
hyperbolic differential equations for A,, and A, which is
consistent with the constraint equations [i.e., with Eq. (7)
and A%, = 0]. Doing so, we again obtain a well-posed
initial-value formulation for the generic evolution of the
linearized nonsymmetric field. One can now repeat the
above arguments and arrive at a similar conclusion—this
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time, applied to the formation of a nonspherical black hole
by the collapse of pure gravitational radiation: If the ini-
tial skew field is sufficiently small, no important dynam-
ical effects are expected to occur on the approach to the
event (or apparent) horizon. Therefore, a black hole is
expected to form, as in GR.

If, indeed, a black hole forms in NGT, what would then
be its final state? The equation satisfied by k& [Eq. (17)] is
nothing but the radial equation for the / = 1 mode of a
massless scalar field. Consequently, from the analysis of
Price [19], an external observer will witness an inverse
power-law decay (in the external time #) of the skew
field, with a usual GR black hole as the final state. [It
is interesting to note that in the more general case, ¢ # O,
a permanent skew hair will remain after perturbations die
out: Defining k = k + c¢, one readily finds that Eq. (17)
is recovered with k replaced by k. This means that
k will decay asymptotically to zero, and consequently
k will approach —c¢. The nature of this hair, and the
implications it has on the features of the black hole, await
further investigation. Recall, however, that this case is
not asymptotically Minkowski.]
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