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Generation of Zonal Flow and Meridional Anisotropy in Two-Layer Weak
Geostrophic Turbulence
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Evolution of weak anisotropic 2D turbulence in a two-layer medium is considered by way of an
example of geostrophic turbulence. Numerical experiments with a kinetic (energy transfer) equation
confirm that a powerful barotropic nearly zonal flow is always generated, whereas its baroclinic
component is typically suppressed. For certain initial conditions a considerable large-scale baroclinic
meridional anisotropy is excited.

PACS numbers: 92.10.Dh, 47.27.Eq, 47.55.Hd

A wide variety of processes in plasma physics (drift
waves, electromagnetic electron oscillations of an inho-
mogeneous magnetized plasma, trapped-ion waves in a
tokamak, etc. [1]), geophysics (geostrophic turbulence,
Rossby waves [2]), and astrophysics (density waves in gas
disks of galaxies [3]) may be reduced to a general prob-
lem of free (quasi) 2D anisotropic turbulence. In the sim-
plest case, the latter is described by the nondimensional
Charney-Obukhov (-Hasegawa-Mima) equation:

t7(AP —a P)/cjt + P cubi/t/coax + eJ(t/t, At/t) = 0, (1)

where t/t = P(x, y) is the stream function, J(f, g) =
f, gy

—g, fy, and the meaning of parameters a, e, P
depends on the physical system considered.

Evolution of motions governed by Eq. (1) has been ex-
tensively studied [1—5]. An inverse energy cascade causes
increasing both the characteristic scale L and the role of
the anisotropic term et//t)x [whose presence results in
the existence of wave solutions to the linearized Eq. (1)].
At some instance the motion will be gradually rearranged
from a turbulencelike to a wavelike type: At L = Lp =
2U/P (U is the typical velocity of fluid particles), eddies
transporting the fluid are transformed into waves travel-
ing along the fluid. Further evolution mainly takes place
owing to wave interactions. Its intensity slows down es-
sentially because a resonance condition for the frequencies
of interacting waves needs to be met. The mean frequency
of the wave field decreases. This together with the scale-
increasing process causes intensification of flow along the
x axis (zonal anisotropy). At the infinite-time limit, only
stationary zonal currents (flows along the x axis) with scale
at Lp are believed to exist in dissipative systems (i.e., the
energy cascade stops at this scale), while methods of sta-
tistical physics predict a spectrally isotropic final state for
truncated inviscid flows [5,6].

However, in the idealized case, the scale-increasing
process continues. Later on, the weakly nonlinear ap-
proximation (e = U/PL «1) and methods of the ki-
netic theory [7,8] become applicable. The distinguishing
feature of the latter is that it treats the flow as a system
of weakly nonlinear waves with a continuous spectrum,
which evolves owing to resonant interactions exclusively.

It predicts that the motions in question may tend to an
anisotropic equilibrium state but the energy cascade also
stops at a certain wave number.

If the flow is structured in the z direction (e.g. , stratified
flows in geophysics), it possesses the described basic
features as well. The dominant opinion in the literature is
that this structure will mostly be stirred [4,5]. However,
its presence actually results in an additional degree of
freedom, the reasons for damping of which are not
obvious. This Letter describes several features of primary
interest caused by this structure in the late (weakly
nonlinear) evolution of the turbulence in question. Under
certain conditions, it does not vanish and enables the
energy cascade to scales essentially larger than in the pure
2D case.

Energy transfer (kinetic) equation for motion compo
nents —Since E.q. (1) has been first derived and most
commonly used in Earth sciences [2,4,5], we shall fol-
low its geophysical interpretation. It describes the evo-
lution of geostrophic turbulence (quasi-2D flows with
L ) 20/100 km and the time scale r ) month/week
in Earth's oceans and atmosphere). The Earth's surface
is treated as an infinite even plane (P plane) in which
the Coriolis parameter f (the vertical component of the
background rotation) varies linearly in a North-South di-
rection (f = fo + Py, where fo —10 4 s ' is its typi-
cal value at midlatitudes and P —10 " s ' m '). This
variation is traditionally called the P effect, the typi-
cal size of vortices (synoptic rings in the ocean and cy-
clons or anticyclons in the atmosphere) is of the order of
a ' —100/2000 km, and the wave solutions to Eq. (1)
are called Rossby waves.

The above-mentioned structure is induced by vertical
density alteration, which in a simple manner is captured
in a model consisting of two nonmixing layers. Evolution
of P-plane motions in such a model is governed by two
coupled equations, both of which are similar to Eq. (1)
[4,5,9]. We shall use a traditional decomposition of the
flow (and wave harmonics) into the barotropic 'Ito =
P~ + i/tzhz/h~ and the (first) baroclinic W~ = P~

—Pz
mode (t/tt, P2, ht, h2 are the stream functions and mean
thicknesses of the upper and lower layers, respectively).
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The barotropic component roughly corresponds to the
vertically averaged flow while the baroclinic component
characterizes its shear.

The weakly nonlinear spectral evolution of the system
is described by the kinetic (energy transfer) equation [9]:
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X 6(ru )6(Koi2) dKi2 . (2)
Here F„(tr, T) is the energy spectrum of the barotropic
(p = 0) or the baroclinic (p = 1) mode; tr = (k, l)

pmn
the wave vector; T = e t the slow time; 2C--

l

pm~i&; && tr/l (tr~ + a„—tr, —a ) the interaction co-
efficients (the coefficients yrnn depend on the vertical
structure of the medium; see [9]);K„„=C™F' F, +

tr = ltcl, Np, = (tr + a„) (tr) + a ) (tr2 + a„); B(x),
the Dirac delta function; cu„' „—:cuz(yc) + cu (/c~) +
ru„(tr2); ru„(tr) = —k/(tr + a„) the dispersion relation
of the Rossby ~aves of the pth mode, K0~2 = K + K~ +
K2,' and d K)2 = dk) dl) dk2dl2, K P R . The quantities
a„' are called the barotropic ( p = 0) and the (first) baro-
clinic (p = 1) Rossby radii and depend on the back-
ground physics. In our experiments we have used the
nondimensional values ao = 0, a~ = 1, and h~/hz = 0.2.

We choose the physical background to be motions in
the oceans, where the density of water masses varies
insignificantly. We disregard the quantities of the order of
its relative alteration, which yields po&

= p~o = &00 = 0.
This reflects the fact that the interactions between two
barotropic and one baroclinic Rossby wave are much less
intense than other resonant interactions [10]. Equation (2)
is truncated at tr = 4 (the interactions involving waves
with tr ) 4 are ignored) and the Cauchy problem for them
is solved numerically. For technical details we refer to
Ref. [11]. The initial conditions have energy maximum
at K = 0.7, but control runs show that its disposition does
not qualitatively affect the spectral behavior.

We performed simulations during 5 —10 slow time
units. Each unit is equivalent to several years. During
this time interval, the total interaction intensity I =
f(l&Fo/~TI + h&/h2laF, /aTl)dk dl decreases from ten
to several dozens of times. Also, the system entropy
H = f ln(FoF~)dkdl reaches a nearly constant level.
Thus, the computed final states evidently reflect the main
features of the equilibrium state.

Generation of a barotropic nearly zonal gow as a typ
ical scenario. —The temporal evolution of the barotropic
spectrum Fo is always similar to that of the one-layer
case [7,12] and shows a coexistence of two tendencies.
First, a portion of the energy is concentrated near the
l axis to form a well-defined spectral peak, correspond-
ing to an intensive nearly zonal fiow. (%'hen speaking
about zonal flow, we actually mean nearly zonal mo-
tions: Generation of flow in exactly the x direction is

///
V//

VI/

0 1

I

II
il

ill
l

II l I
IlI/

1

Ii

T=3 0

0
0

i/
II pl
JI

I(~ l 1 I

/

0
0

//j \

V//

0 v//

0 1 2
2 ) I /%

LI / , T=10I(
II
II I'/x
II I

IIII ll

III
tel

Ul

l&

,
ill X
ilk 1

flit
)Il/ l

V// k0 0// I li
1

0 ] 2
2 I I

T=)5
I I/

II
II

I/
Ill
il
W

til

ill &

hl I

1%I
1

)ill
l

0"" nNI l

, i k
0 1 2

not possible in the system in question; see, e.g. , [7]). Sec-
ond, remote from this axis the spectrum tends to become
isotropic (Fig. 1). The energetic maximum is located at
l = 0.65 while the peak (below called the zonal peak) is
located between l = 0.3 and l = 1.0. It turns out to be
higher, narrower, and located closer to the l axis as com-
pared to the one-layer flow. This difference partially re-
sults from the fact that in the one-layer experiments [7,12)
typically the value ao = 1 was used instead of ao = 0 in
the current study. However, a detailed analysis shows that
interactions between flow components usually tend to am-
plify the peak in question.

As a rule (if Fo ~ F~ at k ~ 1 and T = 0), the baro-
clinic spectrum F& reaches a practically isotropic shape
relatively fast. This behavior is somewhat unexpected be-

I'IG. 1. Typical spectral evolution. Spectral density of energy
Fp(k, I, T) of the barotropic (left column) and the baroclinic
mode (right column) is contoured at several time moments
in the main energy-containing area 0 ~ k, l ~ 2. The sign
of the k component is reversed. Both the initial functions
are proportional to ~ exp( —Ir ) cos p (p is the polar angle of
the wave vector) and correspond to a mainly meridional liow.
Contour intervals are logarithmic (4 lines per decade) starting
from 0.01. The dashed lines are used for F„~0.1.
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FIG. 2. Generation of baroclinic meridional anisotropy
The initial functions are Fp K exp( —K ) cos
F& —v exp( —

yc ). The barotropic motions initially are
mostly meridional, while the baroclinic component is spectrally
isotropic. An additional short-dashed isoline is drawn at
F] = 0.7. Other notations are the same as for Fig. 1.

cause self-interaction of the baroclinic mode (equivalent
to that of the barotropic mode with ao = 1) should always
create a zonal anisotropy. We continued computation of
several cases during additional 5 time units (Fig 1). The
barotropic zonal peak follows up to increase and concen-
trates with time in a slightly closer vicinity to the l axis,
but no sign of anisotropy of the Fi field was detected.

The strict and long-time suppression of the baroclinic
zonal flow appears to be an essential feature of stratified
quasi-20 flows. It indicates a possible tendency towards
equilibrium state, the zonal component of which is ver-
tically homogeneous and endorses the opinion that zonal
barotropic currents should be the likely end state of the
system in question in the viscid case [5,6,13]. It also re-
veals the fundamental difference between the isotropic and
zonal parts of equilibrium solutions to Eq. (2): The verti-
cal structure of equilibrated zonal flows remains undefined
in the theory [9] and may depend on initial conditions.

Generation of baroclinic nearly zonal fiow . The total
spectral isotropization of baroclinic flow components
cannot be an overall feature of motions in question.
Starting from a pure baroclinic flow [Fp(k, 0) = 0], the
baroclinic zonal anisotropy should be generated, at least,
for a limited time interval. This is demonstrated by
integrating several initial states with Fo(2, 0) (( F~(k, 0)
in the vicinity of the l axis (Fig. 2).

In these case, both the initial and the further evolution
of the Fi field are similar to those of the Fo field. With
time, a zonal peak of Fi emerges near the L axis and
continues to grow during all the computation time. Its
disposition and geometrical features are similar to those
of the barotropic zonal peak, but it is lower and wider
than the barotropic one, and placed at a greater distance
from the l axis. The latter features can be explained by
the difference of Rossby radii for the modes.

Therefore, the final vertical structure of the (nearly)
zonal flow turns out to be strongly dependent on the
initial state. Typically, a barotropic zonal flow is excited
relatively fast and, after some time, completely suppresses
generation of a respective baroclinic motion. However, if
an essential shear of the zonal flow is excited for some
reason, it will not be damped. For forced dissipative flows
this feature is intuitively obvious, but for the system in
question (which evolves towards a thermal equilibrium) it
is deeply nontrivial.

Large-scale meridional anisotropy. —In the one-layer
simulations, the spectral energy exchange is mostly local
(i.e. , takes place between waves of comparable length)
[7,12]. Energy transfer to meridional (directed along the y
axis) motion components appears seldom and is identified
as the tendency toward an isotropic final state. As striking
contrast to these features, a nonlocal energy redistribution
to a mostly meridional flow is detected in the later
phases of several current experiments. This phenomenon
only appears in cases when both the barotropic and
the baroclinic nearly zonal flow have gained a certain
intensity (Fig. 2).

A spectral peak of some extension along the 1 axis
arises in the vicinity of the k axis in the baroclinic
spectrum F~. Its maximum is located at k = (0.3;0.1).
It thus represents a mainly meridional flow with the
horizontal scale exceeding that of the initial motion
several times. It usually remains, at most, less than half
the height of the zonal peak, but increases during all
the later phases of computations. The peak is evidently
unstable, but its smoothing is likely to take a long time
and will result in the creation of extreme slowly changing
motion components.

The interactions with zonal flow play a crucial
role in the formation of this peak. An arbitrary triad
k = (k, O), kt = (0, 1), k2 = (—ic, —1) satisfies the
resonance conditions cairo = 0; Kp~p = 0 provided
the waves with K, K~ represent the baroclinic and K2
the barotropic modes. If both the modes have a significant
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zonal anisotropy at k « 1, I = 1, the main contribution
to t)F~(tr)/i)T is proportional to F~(tr~) [Fo(kz) —F~(k)]
and results in energy transfer from the barotropic nearly
zonal flow Fo(kz) to baroclinic large-scale disturbances
F&(t~). Obviously, this mechanism is also active for other
triads unless there exist appropriate interacting waves
with vectors located close to either spectral peak.

An analogical mechanism (interaction between two
harmonics of a fixed mode with the zonal flow) exhibits a
tendency of spectral symmetrization [7,12] and appears
as a flag of impossibility of nonsymmetric equilibrium
distributions. The meridional anisotropy is created by
intermodal interactions exclusively. In contrast with the
spectral symmetrization, energy may now be redistributed
between waves of drastically different wavelengths.

In conclusion, the reinforcement of the zonal compo-
nent of motion is typical for large-scale flows. The basic
effect of barotropization of geophysical flows has been
detected from both experimental data and numerical sim-
ulations [2,4,7, 13]. A deeply interesting peculiarity of
the described spectral evolution consists of the suppres-
sion of the baroclinic zonal anisotropy (damping of the
shear of the nearly zonal flow) by already existing strong
barotropic zonal flow. Hence, barotropization of realistic
flows may occur selectively, i.e., mainly for their zonal
components.

A basically new phenomenon is the possibility to excite
intense large-scale mainly meridional motion components.
It is directly related to the vertical structure of flows and
enables energy cascade to scales much greater than the
baroclinic Rossby radius L

&

= a
&

. Thus, for vertically
structured flows, energy condensation at L = Lp is un-

likely. Another principal point is that these disturbances
gather energy from the barotropic nearly zonal flow while
all the other processes seem to support it.

In the dynamics of the oceans, the described phenom-
enon may become evident in the form of annual or in-
terannual oscillations. A mechanism of creating large-
scale nonzonal structures is apparently active quite often
in planetary atmospheres (although the two-layer model
poorly represents their dynamics). The baroclinic merid-
ional peak can be thought of as a spectral evidence of
blocking phenomena or large-scale hot or cold waves (re-
sponsible for abnormally warm summers or cold winters).
The fact that this peak becomes evident only after the ex-
citation of a multimodal zonal flow probably can be used
for prediction of these phenomena.

Interesting in itself is the cascadelike approach to
the final state, with alternating generation of slowly

changing barotropic nearly zonal flow, then the baroclinic
meridional motions and, at the very end, creation of a new
phase of extreme slowly changing flow. This peculiarity
may be one of the reasons why in direct simulations the
two-layer P-plane turbulence needs an enormous time
interval to become statistically steady [13].
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