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Two.-Dimensional Navier-Stokes Simulation of Deformation and Breakup of Liquid Patches
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The large deformations and breakup of circular 2D liquid patches in a high Reynolds number
(Re = 1000) gas flow are investigated numerically. The 2D, plane flow Navier-Stokes equations are
directly solved with explicit tracking of the interface between the two phases and a new algorithm
for surface tension. The numerical method is able to pursue the simulation beyond the breaking or
coalescence of droplets. The simulations are able to unveil the intriguing details of the nonlinear
interplay between the deforming droplets and the vortical structures in the droplet's wake.
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The dynamical processes leading to the breakup of a
single lump of fluid into several pieces and, conversely,
the coalescence of several pieces into a single one have
captured considerable attention from both the theoretical
[1—3] and experimental side [4—6]. From the theoretical
point of view, much of the interest stems from the fact
that breakup and coalescence provide eminent examples
of topological singularity formation in hydrodynamic sys-
tems. Practical interest is even more evident if one thinks
of the enormous wealth of physicochemical phenomena
in which drop formation and breakup play a crucial role.
The merging of galaxies, spray vaporization combustion
in diesel engines, and deformation of biological cells are
just but a few representative examples. In many instances
the primary question is just to assess under which condi-
tions do breakup and coalescence occur. However, it is
clear that the exploration of what happens after breakup
or coalescence is of paramount importance to deepen our
understanding. The latter question is even more formida-
ble, but the numerical simulations presented in this Letter
should offer a preliminary answer.

The physics of drop deformation and breakup is gov-
erned by the competition between hydrodynamic stresses,
viscous or inertial, which act to deform the droplet, and
surface tension, which opposes an increase of the surface
area, and thus tends to restore weakly deformed objects to
a spherical shape.

In this Letter we present simulations of droplets of liquid
moving about in a gas environment. The mathematical
idealization of this problem is that of a 2D, incompressible
Newtonian flow with surface tension on the interface
and viscous dissipation in the bulk. The momentum
balance equations are the Navier-Stokes equations for an
incompressible fluid of variable viscosity

p(cI, u + u Vu) = —Vp + V (pE)
+ V [cr(I —n n)Bs], (1)

where E;~ = 8;u~ + B~u; is the strain tensor rate, I;~ =
6;~ the unit tensor, 6~ a distribution concentrated on
the interface, n the normal to the interface, and o. the

surface tension coefficient. The fluid density p and the
viscosity p, are constant in each phase but vary from
phase to phase. The specific form of the surface tension
term used is equivalent to the more classical Laplace law
[7,8]. We consider incompressible flow with V . u = 0,
and the interface moves at a normal velocity UI = u .
n. In addition to these equations, a condition is needed
for the reconnection of interfaces. In a real flow, this
reconnection is a complex process, involving long range
molecular interactions between interfaces. It is impossible
with current computing capabilities to simulate both the
large scale, high Reynolds flow around a droplet and the
molecular interactions. The pragmatic alternative is to
introduce a cutoff scale 6~ below which one will not
attempt to model the interface physics. Such a cutoff is
consistent with the spontaneous behavior of the volume of
fluid methods described below, in which liquid sheets of
thickness smaller than the mesh size h tend to break.

Taking as a length scale the diameter D of the droplet
and a characteristic speed U of the flow, the problem
has four dimensionless numbers, the gas and liquid
Reynolds numbers Re; = p;UD/p, , i = L, G, the gas
Weber number WeG = po U D/o, and the densi. ty ratio
pt /po. Experiments show that droplets suddenly placed
in a high speed flow break when We~ is between 10 and
20 [9,10]. Several droplet breakup regimes have been
identified [11,12], and the basic theory involves various
instability mechanisms for the liquid gas surface [13,14],
following the pioneering work of Taylor [15]. We are
not aware, at this date, of numerical simulations of this
problem beyond relatively small droplet deformations.
However, it must be noted that simulations exist in the
limit of vanishing Re; [4].

We used the method described in [8,16]. A first order
in time explicit integration of Eqs. (1) was performed
using the MAC staggered finite difference grid for the
momentum balance equation. The 2D version of the
method was used in order to achieve calculations on
larger grids. The incompressibility condition is accurately
met by a projection method [17] with the help of a
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multigrid algorithm [18]. Surface tension is implemented
in a momentum conserving way, via the introduction
of a nonisotropic stress tensor concentrated near the
interface [8]. This representation of surface tension
stresses is especially interesting for the simulation of
breakup, since it avoids the singularity which would occur
in the continuum limit when interfaces change topology
and the curvature becomes locally infinite.

The velocity field u obtained at each time step is used to
propagate the interface using the volume of Quid method:
the location of the interface is represented by the volume
fraction C,~ of Iluid 1 in the computational cell i, j [16,19—
21]. We have 0 ( C;~ ( 1 in cells cut by the interface
and C;~ = 0 or 1 away from it. The propagation of the
interface at velocity U is performed in several steps. In a
first step, the interface is reconstructed in each cell inde-
pendently. Linear segments of the slope approaching that
of the interface are constructed, in the so-called piecewise
linear interface construction (PLIC). The construction uses
a local interface normal n estimated using an 8 point (in
2D) centered finite difference of C;J. In a second step,
the interface motion is calculated in a Lagrangian manner
with velocities obtained by linear interpolation. Finally the
volume fractions are recalculated. With the PLIC method
[16,19—21], the position of the interface is reconstructed
with errors of order 8(lrh ), where Ir is the local curva-
ture, for the position of the interfaces, and thus more ac-
curately than in most volume fraction methods, including
that of Ref. [8]. During the simulations, we observe that
only a very small fraction of the mass is lost. In the com-
plex case of Fig. 3 this fraction is less than 2 X 10 3 over
the entire simulation.

We performed our simulations in a square periodic box
of size 5D X 5D. The simulation was initialized with
a uniform velocity U in the gas and the liquid droplet
at rest. In all simulations reported here we kept Rel, =
2000, the liquid to gas density ratio pl. /pG = 10, and
Reg = 1000. Several droplet deformation and breakup
scenarios have been unveiled for varying WeG. The first
scenario is shown in Fig. 1. As a result of the presence
of two rear vortices engendered by the droplet motion,
a concavity develops in the droplet surface which takes
a typical "banana-shaped" configuration, with its concave
side facing downstream [Figs. 1(b) and 2]. These vortices
further stretch the droplet until rupture occurs near the
tips. The coherent structures in the wake of the droplet
are characteristic of 2D turbulence. A boundary layer
develops on the front of the droplet as predicted by Taylor
[15]. However, at this WeG the boundary layer is stable.

The "mother" droplet may again break in a similar fash-
ion thus generating additional children droplets. Alterna-
tively, if WeG is sufficiently high then second-generation
droplets may also breakup, producing third-generation
droplets in a kind of bifurcation cascade. Moderate reso-
lution (2562) and high resolution (512 ) simulations ex-
hibited similar results.

FIG. 1. Simulations of droplet breakup for WeG = 10. 512
grid points in a periodic box are used.

Simulations at larger Weber numbers such as the
We~ = 100 simulation of Fig. 3 show the formation of
much smaller scale structures. The droplet forms elon-
gated filaments. The boundary layer on the front side of
the droplet is now unstable, and hornlike structures typi-
cal of the Kelvin-Helmholtz instability are seen to grow
while they are transported downstream [see Fig. 3(b)].
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FIG. 2. Same as Fig. 1(b), hut with vorticity contours shown.
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FIG. 3. Simulations of droplet breakup for We~ = 100.

Yet another mechanism is shown in Fig. 4. There the
droplet elongates, then makes a bag with its concave side
facing downstream. The bag closes, then breaks on the
upstream side before yielding several separated droplets.

The simulation, although 2D, may be qualitatively com-
pared to the experimental results. There are qualitative
similarities, such as the breaking near the tips in Fig. 1(b)
or the bag formation. The WeG = 100 simulation shows
the sheet stripping mode mechanism reported by [12] for
100 & We~ ( 350. The most important difference oc-
curs at We(.- = 10 where in experiments the concave side
faces mostly upstream. We believe that this difference
arises because of the initial conditions we use, which re-
sult in a jump of the velocity —a vortex sheet —at the
interface. This vortex sheet rolls up behind the droplet
and creates structure seen in Fig. 2. Work is in progress
to investigate the inhuence of initial conditions.

In conclusion, the results highlight the power of ad-
vanced numerical techniques to unveil the fascinating

FIG. 4. Simulations of droplet breakup for We~ = 20.

complexity resulting from the nonlinear interplay between
gas-liquid interface and gas vortex motion. In particular,
the crucial role played by coherent vortical structures sug-
gests that the inclusion of the ReG dependence is key to
the formulation of more advanced and realistic breakup
criteria. On the other hand, these results also indicate
that caution is needed before the results provided by the
numerical tool can be effectively converted into quanti-
tative information of engineering interest, such as phase
diagrams and similar data.

One difficulty rests with the slow convergence of such
calculations with the number of grid points. In some
regimes, the lower resolution experiments produce a simi-
lar picture as provided by higher resolution ones, the main
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difference being that transitions in phase diagrams occur
at different WeG. In some instances, however, genuinely
new mechanisms arise: The bag mechanism of Fig. 4
was observed only in 512 simulations. A second diffi-
culty is the two-dimensional nature of these calculations.
As is well known, coherent vortical structures behave
quite differently in two with respect to three dimensions,
and so should breakup mechanisms. The Rayleigh in-
stability, which plays such an important role in the final
stages of capillary driven breakup [5], is absent in 2D.
(However, this may affect only the smallest scales of a
large We breakup. ) Despite these difficulties, we regard
two-dimensional simulations as a very useful warmup
for more realistic three-dimensional investigations. While
the former are already rather computationally expensive
(about 3 CPU seconds per time step for a 512 reso-
lution on a IBM RS/6000 mod. 590 workstation), the
latter set a pressing demand for high-resolution compu-
tations requiring the use of the most powerful present-day
supercomputers.
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