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%e analytically derive the geometrical structure of the weight space in multilayer neural networks
in terms of the volumes of couplings associated with the internal representations of the training
set. In this framework, focusing on the parity and committee machines, we show how to deduce
learning and generalization capabilities, both reinterpreting some known properties and finding new
exact results. The relationship between our approach and information theory as well as the Mitchison-
Durbin calculation is established. Our results are exact in the limit of a large number K of hidden
units, whereas for finite E a complete geometrical interpretation of symmetry breaking is given.
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Memorization, rule inference, or information process-
ing by a neural network may be seen as a complicated
selection of one part of its whole weight space [1,2]. Sta-
tistical mechanics has permitted a quantitative study of
this selection process for the simple perceptron and has
been successfully applied to simple models of multilayer
neural networks (MLN's) to compute storage capacities
and generalization errors [2—5].

However, the geometrical picture of MLN's weight
space describing the role of internal representation (i.e.,
the way the input data are encoded inside the networks)
and thus a unique "microscopic" frame allowing for the
physical interpretation of the computational behavior, is
lacking so far. This issue is deeply related to information
theory and thus of potential interest both for biologically
motivated models and for algorithms.

In this Letter we analytically derive such geometrical
structure and show how it allows one to deduce and inter-
pret the networks learning and generalization capabilities
as well as to provide a unified point of view on apparently
unrelated issues, such as the Mitchison-Durbin calculation
[6], replica symmetry breaking (RSB), and information
theory.

We extend the usual Gardner's approach to learning
and generalization, by explicitly taking into account both
the internal state variables and the interaction weights
and by studying the volumes of couplings associated
with the possible internal representations of the learning
task. Though the method we adopt may, in principle, be
applied to any MLN, we concentrate on the parity and
committee machines which are the MLN's most studied
using statistical mechanics.

For the storage problem, we focus upon the volumes
giving the dominant contribution to Gardner's total vol-
ume, whose number exp(3VD) is smaller than the total
number exp(3V&) of nonempty volumes. For the par-
ity and committee machines with K (»1) hidden units,

lnx
3VD and 2Vg both vanish at

1
and —QlnK (so far un-

known), respectively. Our results are shown to be exact

in this limit and are likely to coincide with the storage
capacities of both machines. For finite K, we provide a
geometrical interpretation of RSB together with numerical
results in the case of K = 3.

The inference of a learnable rule is studied along
the same lines. We first reinterpret recent results [5]
concerning the Bayesian learning of a rule by a parity
machine. We then explain the smoothness of the gen-
eralization curve of the committee machine near its
Vapnik-Chervonenkis (VC) dimension [7] dvc —glued
and conjecture a crossover to lower generalization error
for o.' &co

In the following, we shall consider treelike MLN's,
composed of K nonoverlapping perceptrons with real-
valued weights Jg; and connected to K sets of indepen-
dent inputs $~; (4 = 1, . . . , K, i = 1, . . . , N/K) [3]. The
output o. of the network is a binary function f (7 ~, . . . , i.x)
of the cells rr = sgn (g; J~, s~, ) in the first hidden layer.
The set (i.g) will be called hereafter the internal repre
sentation of the input pattern (sr, ). For the parity and
committee machines, the decoder functions f are, respec-
tively, g~ i.

& and sgn (g~ i.&). The training set to be
stored in the network includes P = nN patterns tsg) and
their corresponding outputs o.~ (p, = 1, . . . , P) For sim-.
plicity, both patterns and outputs are drawn according to
the binary unbiased distribution law. In order to store the
patterns, one must find a suitable set of internal represen-
tations 2 = (i.r ) with a corresponding nonzero volume

~(~ f([~r")))

where 0( . ) is the Heaviside function and the integral
over the weights fulfills f g~; djr; = 1. Gardner's total
volume is simply VG = g~ V~, and the critical capacity
of the network is the value n, of the maximal size
of the training set such that lnV~ is finite, where the
overbar denotes the average over the patterns and their
corresponding outputs [2]. Moreover, the partition of

2432 0031-9007/95/75(12)/2432(4)$06. 00 0& 1995 The American Physical Society



VOLUME 75, NUMBER 12 PHYSICAL REVIEW LETTERS 18 SEPTEMBER 1995

(2)

VG into connected components may be naturally obtained
using the VZ's as elementary "bricks" [8].

Once the canonical free energy
1

g(r) —= — 1n(g tr~
Nr

is known, one obtains the microcanonical entropy 3V (w)
(i.e. , the logarithm of the typical number) of volumes

I
VZ, whose sizes are equal to w = ~ lnV& using the

Legendre relations w„= ~„and 3V(w„) = —
„l,&„1

)[rg(r)] Bg(r)

[9]. The average over the patterns is performed using the

replica trick for r integer, expecting that the final results
remain valid for any real value of r. There are r blocks
(p = 1, . . . , r) of n replicas (a = 1, . . . , n) Th. us the spin

ap, b A
glass order parameters are the typical overlaps q~

ap bW
~ g; J;& J;& between two weight vectors incoming onto
the same hidden unit 8 (8 = 1, . . . , K) and their conjugate

„ap,b A

Lagrange multipliers q~
'

. Since all the hidden units
are indistinguishable, we assume that at the saddle point

ap, bA a bp ap b~ a bp
q~

' = q p ~ and q~
' = q' p ~ independently of f.

Within the replica symmetric (RS) ansatz [10],we find

2r
1 r

g(r) = Extr ln(1 —q.)—
q, q.

1
in[1 —q. + r(q„—q)]2r

q
2[1 —q. + r(q. —q)]

DxtlnM((xt)) (3)

where A((x&)) = Trl„l gt fDytH[(ytgq, —
q +

~&x&~q)/Ql —q, ]". Here q, (r) = q'g 'x and

q(r) = q'R are the typical overlaps between two
weight vectors corresponding to the same (a,p 4 A)
and to different (a 4 b) internal representations 2,
respectively [2,9]. The Gaussian measure is denoted by

2/2Dx = ~e ' i, whereas the function H is defined as

H(y) = f Dx. In Eq. (3), the sum Trl„l runs over
the internal representations (~t) giving a positive output
f((r&)) = +1 only, since the outputs o ~ can always be
set equal to +1 at the cost of redefining the input patterns.

The whole distribution of volume sizes is available
through g(r). When N ~ ~, ~ln(VG) = g(r = 1) i—s

1

dominated by volumes of size w, =~ whose corresponding
entropy (i.e., the logarithm of their number divided by
N) is 3' = 3V(w„=~). At the same time the most
numerous volumes are those of smaller size w, =o, since
in the limit r ~ 0 all the 'E are counted irrespective
of their relative volumes. Their corresponding entropy
3VR = 3V (w„=o) is the (normalized) logarithm of the
total number of implementable internal representations.
The quantities 3Vo and 2Vz are easily obtained from
the RS free-energy Eq. (3) using the above Legendre
identities. In particular, q(r = 1) is the usual saddle-
point overlap of the Gardner volume g(1) [2,3]. The
vanishing condition for the entropies coincides with the
zero volume condition for VG and thus gives the storage
capacity of the models.

Both 3V~ and 3VR have a straightforward interpretation
in the context of information theory. One can easily
verify that the quantity of information I carried by the
distribution of the implementable internal representations
2 about the weights,

z= —g 4
VG VG

'

is equal to 3VD. The information capacity, i.e., the max-
imal quantity of information one can extract from the
internal representations, is achieved when all internal rep-

resentations 2 are equiprobable and thus equals 3VR.
One should notice that the Mitchison-Durbin [6] geo-
metrical calculation is simply an upper (and decoder-
independent) bound on 3VR and that our approach allows
us to compute systematically the corrections to this bound.

Figure 1 displays the RS entropy DVo as a function
of n for both the parity and committee machines with
K = 3 hidden units. This entropy vanishes at a critical
value nz of the size of the training set. Numerically,
we find n~ = 3.8 and 2.9 for the parity and the com-
mittee machines, respectively [11]. Being the entropy
of a discrete system, 3VD cannot be negative and there-
fore nD is an upper bound of the size of the training
set nRsn [12], where the replica symmetry breaking oc-
curs for both 3Vo and VG [9]. When gx ~ nRsn, the
RS assumption is exact, whereas 3VD is positive, show-
ing that the number of internal representation volumes
contributing to VG is exponentially large with %. q,
measures the typical overlap inside one of these volumes,
while the usual overlap q arising in the RS computation
of VG tells us how far away are two different volumes
V~. The behavior of q vs n is shown in the inset of
Fig. 1. When choosing randomly two weight vectors stor-
ing the training set, the probability that they belong to
the same V~ vanishes as exp( —N3V~), and their over-
lap distribution cannot be told from a Dirac peak in q,
as must be for the RS solution to be exact. As a conse-
quence, the blind computation of VG, though it gives cor-
rect results, hides the geometrical structure of the weight
space. In the limit of a large number K of hidden units,
the asymptotic expressions of the overlaps and of nz
may be obtained analytically. We find that q = 0 and

q = 1 —128/7r n for the parity and the committee ma-
chines, respectively, and that q. = 1 —~21 2/2a2K2 in
both cases with I = —I/[~sr f du H(u)lnH(u)] = 0.62.

(par)
The corresponding entropies 3Vo = 1nK —nln2 and

3Vo ——lnK —m n /256 vanish at gxo = and
(con) ( ) 1
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FIG. 1. 3V~ (upper curves) and 3V~ (lower curves) for the
parity machine (bold) and the committee machine (light), with
K = 3 hidden units. Inset: q&, q„, q„' (lower, middle, and upper
curves, respectively) vs n for the parity machine (q& starts at
n = nRsB = 3.2 with a value close to 0.93).

When n ) o.Rsn, the computation of 3Vj) requires
the introduction, at the first stage of RSB, of four order
parameters q„', qo, q&, and m: q,' is the internal overlap
of the internal representation volumes and qo, q&, and m
are simply the usual parameters arising in the one step
Gardner's computation [13]. Above nRsn, there exist
a finite number of big regions with mutual overlap qo.
Each region contains an exponential number of volumes
of internal overlap q,' and typically are separated by
an overlap q&. The number of such regions may be
roughly estimated by i [10]. We have checked this

]

geometrical scenario numericaHy for the parity machine
with K = 3 hidden units (numerically much simpler than
the committee machine case, since qo = 0 at the saddle
point). The internal overlap q,' is continuous at the RSB
transition —see the inset of Fig. 1 with q ( q,' for

cvRsg.
We conjecture that on increasing u a whole continuous

breaking of RSB occurs. The geometrical process should
then be thought of as a progressive shrinking and disap-
pearance of volumes with internal overlap q. (n) inside
subregions characterized by q(x, n) [10]. In Fig. 1, we
have reported the curve of 3V~ computed with this one
step ansatz for the parity machine K = 3. nD increases
from = 3.8 (RS value) to a value close to 5 and thus to
the one step RSB value of n, [3].

The RS calculation of 3VR for both machines leads the to
2

following general result. When n ( g, one finds that all
the 2~ '~ internal representations may be implemented.
This obviously coincides with the storage capacity of the
hidden perceptrons seeing only N/K input units. For

2n ) ~, we find that at the saddle point q = 1, mean-
ing that the most numerous volumes Vz- are almost empty
and are therefore the smallest ones at the same time. For

s(r) = — g v~ln(g v~),Nr (5)

the parity machine with K ~ 3, a locally stable saddle-

point solution leads to GER = nKln(nK) —(nK—(par)

I)ln(nK —1) —nln2, which exactly saturates the upper
bound derived by Mitchison and Durbin [6]. In the case
of the committee machine, a simple analytical expression

(com)for 3VR is not available for finite K. Once more in
Fig. 1, we report the numerical results concerning the RS
calculations of 3YR for both machines with K = 3. The
value nq at which 3Vp vanishes should satisfy the obvious
inequality o.D ~ nR ~ n, ; the RS approximation, how-
ever, overestimates ng leading to an expression which is
slightly larger than the one step value of n, . [14]. This is
evidence for the necessity of RSB to compute 3Vg exactly
for finite K.

When K &) 1, 3VR (az) is asymptotically equal to 3VD
(arri). In the case of the parity machine nD and nR also

lnxcoincide with the known value of n, = l„[3]. We
16expect the same equality (ari = nq = n, = —QlnK) to

hold in the case of the committee machine.
In order to show that the RS solution of MR is asymp-

totically correct, we have checked its local stability with
respect to fluctuations of the order parameter matrices.
This stability calculation will be displayed in detail in
[13]. We find that there is no need to break the sym-
metry inside a single volume described by the RS order
parameter q, whereas the RS ansatz q = q'l'" between
two distinct volumes is unstable for any finite K. How-
ever, this instability decreases with increasing K. For
both machines, our RS solution is marginally stable when
K ~ oo and should therefore become exact in this limit.

Not only storage but also generalization abilities
strongly depend on the weight space structure. When
a "student" network infers a learnable rule (i.e., gener-
ated by a "teacher" network endo~ed with an identical
architecture), its weight space (or version space [15])
progressively shrinks when. increasing the number of
examples. In the simple perceptron case, the version
space is connected and the typical generalization error
done by the student goes to zero as its overlap with the
teacher increases. The situation is more complex in
MLN [16], where the alignment of the student along the
teacher becomes more difficult due to the existence of the
separated components they belong to. To improve our
understanding of this competition between the shrinking
of the volumes and the occurrence of a large number
of them, we have modified our approach to the case of
deterministic input-output mappings.

In the Bayesian framework where all target rules are
weighted with their a priori probabilities —the generaliza-
tion properties are derived through the knowledge of the

1
entropy 5G = —~ VGlnVG [15]. Therefore the freeenergy
generating the distribution of the "sizes" of the internal
representation volumes Vz must now be replaced by
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and the logarithm 3HD of the number of the internal rep-
resentation volumes contributtn~ to the Bayesian entropy
So = s(l) is given by 3Vlti =

~, ~„=~ [17].
In the case of the parity machine, it has been found

[5] that there exists a critical value cto of the size of the
training set separating a high generalization error (eg =

z
when tz ( ctti) regirrie from a low generalization error
phase (eg = — for large n) [5]. This transition may
be geometrically understood along the lines developed
above. Computing s(r) within the RS ansatz, we find

magnitude of nco is corroborated by the condition q = q,
one has to fulfill once a unique Vz remains nonempty
[20]. A rigorous proof of the presence of this crossover

r r
(from eg = 2 — to es = —) at n,„would, however,
require us to extend the validity of our calculation to the
regime 1 (& n —K.

We are grateful to N. Brunel, M. Budinich, M. Ferrero,
and D. O'Kane for discussions. This work has been
supported by the EEC, Contract No. CHRX-CT-920063
and by an Elsag-ISI grant.

1 f' 1
s(r) = Extr ln(1 —q.) ——

2r 2r

X In[1 —q, + r(q, —q)]-
2[1 + (r —1)q.]

2n

f(q )
Dxt 3f(txe))in% ((xt))

(6)

with f(q*) = [2 f DzH(z~q. /Ql q.)"] —and q. (r) is
the saddle-point overlap of so(r) = (1 —r)ln(1 —q, )—
in[1 + (r —1)q.] —2tzlnf(q, ) [18]. In the large K

(par)
limit, we find that q = 0, WD = lnK —nln2 for

1nz (par)
n ~ no = 1, and q = q, , Mrt = 0 for ct ) nn
Thus, below no, the weight space is composed of an
exponentially large number of volumes, and the typical
overlap q between the volume occupied by the teacher

1

and any other one is zero: e~ = 2. Above no, since
only one internal representation survives, the student has

r
fallen down into the teacher volume: q = q. and eg = —.

(par)
When n ( no, 5G = nln2, meaning that all the sets
of P outputs are equiprobable. Choosing them with a
probability VG(ter)) is then equivalent to drawing them
randomly. This is the reason why no defined for the
storage problem (and more generally dvc) appears on
the generalization curve of the parity machine. Our
calculation also indicates that the computation of no
depends upon RSB effects for finite K [18], while the
asymptotic RS expression of eg ought to be exact (see
also [19]).

Turning to the committee machine, a calculation of the
Bayesian entropy SG similar to [4] leads to the following
results when K » n » 1. The typical teacher-student
overlap q decreases as 1 —7r I /2n giving an entropy

(corn) 2I
5t- = 2lnn and e~ = —.This shows that, at variance
with the parity machine case, only a small fraction among

P (corn)
the 2 possible sets of outputs contribute to 5~ and
explains why the generalization curve is smooth for n =
QlnK (which is the order of magnitude of dvc). We

(corn)
find BED ——lnK —Inn, confirming that nti (and thus

dvc) is not relevant to the computation of the typical
generalization error. At n„—K, only a single internal
representation subsists and beyond this critical size of the

training set the generalization error should equal a~ =—
as is for finite K and large n [4]. Note that the order of
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