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Scale-Invariant Behavior and Vascular Network Formation in Normal and Tumor Tissue
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Tumor vascular networks look different from normal vascular networks, but the mechanisms
underlying these differences are not known. By studying the scale-invariant behavior of normal and
tumor vascular networks we show that vascular networks exhibit three classes of fractal behavior.
Tumor networks display percolationlike scaling. Normal arteriovenous networks display diffusion-
limited scaling, and normal capillary networks are compact structures. The mechanisms responsible for
these differences are suggested using a growth model.

PACS numbers: 87.10.+e

The process of vascular network formation (angiogene-
sis) has been extensively researched over the last two
decades [1]. Our understanding of angiogenesis on the
molecular level has been significantly enhanced as at
least 25 endogenous molecules stimulating or suppressing
angiogenesis have been identified [2]. How the effects of
these molecules come together to determine the shape of
vascular networks, however, is not known. In particular,
it is unclear why tumor vascular networks appear so
different from normal vascular networks [3], although
presumably the same growth factors and inhibitors are
involved in their formation. Furthermore, even under
normal conditions it is unclear how a space-filling capillary
network evolves, since angiogenesis is driven by growth
factor diffusion and hence diffusion-limited structures are
to be expected. Knowledge of the determinants of vascular
network growth and shape formation would be useful in
designing interventions that modify angiogenesis.

Fractal analysis has been applied sporadically to the
study of vascular networks with little meaningful results.
However, measurement of the scale-invariant properties of
vascular networks is potentially useful in revealing the de-
terminants of vascular network formation because different
statistical growth processes yield structures with different
fractal dimensions. In particular, fractal analysis can sepa-
rate Laplacian, local, and compact growth processes [4].
In view of these potential benefits we carried out the first
systematic analysis of the scale-invariant properties of dif-
ferent types of vascular networks.

We measured fractal dimensions of a variety of nor-
mal and tumor vascular networks grown in mice bearing
dorsal skinfold chambers [5]. Two symmetrical titanium
frames were implanted so as to sandwich the extended
double layer of skin perpendicular to the animal's back,
thus creating a transparent quasi-two-dimensional com-
partment. In one circular area of 15 mm in diameter, one
layer of skin was completely removed and the remaining
layer was covered with a coverslip incorporated into the

frames. After a 24 h recovery period, 2 p, l of a dense
tumor cell suspension from cell culture (-2 X 105 cells)
were inoculated onto the striated muscle of the transparent
window area [5]. Nude mice were used to grow human
colon adenocarcinoma LS174T. C3H mice were used for
Sal murine sarcoma, SCC7 murine squamous cell carci-
noma, and MCaIV murine mammary carcinoma cells. For
quantification of normal vascular networks two prepara-
tions were used. First, the normal subcutaneous vascu-
lar networks in nude mice dorsal chamber preparations
with no intervention were studied. Second, whole femora
from newborn nude mice were implanted onto the upper
tissue layer of the chamber in nude mice dorsal chamber
preparations [6] and the bone-induced vascular networks
were observed. Images of vascular networks were ob-
tained when tumors were approximately 4 rnm in diame-
ter (9—16 day old) using an intravital microscope [5,6].
Images were analyzed and converted into a binary skele-
tonized form.

A skeletonized image of each type of vascular network
is shown in Fig. 1. Fractal dimensions of the skele-
tonized images were measured using the box-counting
and sandbox algorithms [7]. Fractal dimension measure-
ments of normal arteriovenous subcutaneous vascular

(c)

FIG. 1. Typical skeletonized images of the three observed
classes of vascular networks. (a) Normal subcutaneous arte-
riovenous network; (b) normal subcutaneous capillary network;
(c) LS174T tumor network. The minimum path is in bold. The
bars are 500 p, m.
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FIG. 2. Fractal dimension of the observed vascular networks
as measured with the box-counting algorithm. Box-size range
in which networks displayed scale-invariant behavior was ap-
proximately 50—900 p, m. Results with the sandbox algorithm
were similar.

networks (n = 12) yielded db„= 1.70 ~ 0.03 and

d„„d = 1.70 ~ 0.03; normal bone-induced arteriove-
nous networks (n = 10) yielded db,„= 1.65 ~ 0.04
and d„„d = 1.66 ~ 0.05. In normal subcutaneous
capillary networks (n = 12) the fractal dimension was
db„= 1.99 ~ 0.01 and d„„d = 1.97 ~ 0.01. In tumors,
where arteries, capillaries, and veins cannot be distinctly
classified [3], measurements of LS174T vascular networks
(n = 12) in nude mice yielded db, „= 1.88 ~ 0.04 and

d„„d = 1.89 ~ 0.04. To test the generalizability of
these results, fractal dimensions were measured in C3H
mice implanted with three other tumor lines (n = 3 for
each). All results fell within the same range of fractal
measurements as in the LS174T tumors (Fig. 2). We char-
acterized these vascular networks further by calculating
the minimum-path dimension [8] d;„, which can be con-
sidered a measure of the efficiency of propagation through
the network (in biological terms, it measures tortuosity of
the vessels in the network). In this context, we hypothe-
sized that, due to their tortuosity, tumor networks would
have a higher d;„ than normal networks. In support of
our hypothesis we found the minimum-path dimension of
normal arteriovenous networks to be d;„= 0.99 ~ 0.02;
normal capillary networks d,„=1.00 ~ 0.02; and
tumor networks d;„= 1.10 ~ 0.04, significantly higher

(p ~ 0.0001) than normal networks.
The measurements in the normal arteriovenous net-

works are in concert with the fractal dimensions of two-
dimensional diffusion-limited aggregates (df = 1.71 and
d;„= 1.00) [4,9] and with previously published frac-
tal measurements of retinal arterial and venous networks
[10,11]. These results seem consistent with the accepted
view of the angiogenic process, where growth factors ini-
tially diffuse from hypoxic regions and induce growth.

However, experimentally, angiogenesis does not seem
to occur on the artery-vein level. Rather, vascular growth
occurs at the capillary or postcapillary level. Vasculariza-
tion studies [12,13] have shown that newly formed cap-
illaries grow in a compact mesh and not in a treelike
structure, contrary to the expected structure in diffusion-
limited growth. Our measurements corroborated these
observations by showing that the normal subcutaneous

striated muscle capillary bed is a compact structure.
Therefore, there seems to be a contradiction between
the accepted view of growth by chemotaxis (gradient-
sensitive growth) and the compact structure of the normal
capillary bed.

To explain this apparent contradiction we need a
mechanism that causes growth factor concentration to
increase throughout the growth perimeter, thus "masking"
the diffusion field and promoting more uniform gradients
and growth. The source of growth factors near the
growth perimeter could either be the hypoxic tissue
[14] or the growing structure itself. If the source is
solely the hypoxic tissue (i.e., points far away from
the growing structure), high growth factor concentrations
near the growth perimeter could be achieved provided
that the rate of growth factor reception or removal at
the growth perimeter is slow compared to the diffusion
rate. This is tantamount to a low interaction probability
between growth factors and the growing structure [15].
If, however, the main source of growth factors near the
growth perimeter is the growing structure itself, then
at each growth site we have a local amplification of
growth factor that then propagates to neighboring sites.
Biologically, local amplification of growth factor levels
can be achieved by the autocrine release of growth factors
[16]. It is tantamount to a process where a growth event
is accompanied by an increasing uniformity of growth
probability in sites neighboring the growth site.

We compared both hypotheses for capillary network
formation by constructing a simple growth model. The
growth model incorporated diffusion of growth factor and
vascular growth in response to growth factor reception,
in the presence of either a low interaction probability or
local amplification. The growth model was implemented
according to the following rules. Growth begins at a
single central seed. Growth factor "particles" diffuse from
points removed at least some minimum distance from the
structure. When a "particle" hits the growing structure
it is taken up with a preset probability p;. All uptaken
particles are recorded as "hits" within a fixed time period.
At the end of the period growth occurs at all hit sites.
If there is local amplification, F additional particles are
released at each growth site. F is the "local amplification
factor. " The model was implemented on a 128 X 128
square lattice with periodic boundary conditions.

Model results (Fig. 3) show that either the low inter-
action probability or the local amplification mechanisms,
if strong enough, can lead to the formation of a com-
pact capillary network. However, when one compares the
growth time per unit mass and the growth efficiency (de-
fined as the total amount of growth factor originating from
the hypoxic tissue divided by the mass of the final struc-
ture) of both processes (Fig. 4), one sees that growth in
the presence of local amplification is an order of magni-
tude faster and more efficient than growth in the presence
of a low interaction probability. Thus, it seems reasonable

2429



VOLUME 75, NUMBER 12 PH YSICAL REVIEW LETTERS 18 SEPTEMBER 1995

I ~

~ Ir.
g/Ill
91%'

L

l(1 ~ ~ ~

i+»
.-a lg

J a ~ a
I

54 ll'

~ ~

3 i'rb
I

I

~ ~ I g

+I '% ~

I~ M

~ I

iC

i I ~

a .I

. I ~ -. e 4'-.II- a ~

~ IL
~4 'Il

o 20

l.9-
Q

1.7—

0.001
''I ' ' ' ' ' '''I

0.01 0.1
Interaction Probability

o 2

1.9

1.8-

1.7-
b

I i I I I I I

0 0.5 l 1.5 2 2.5 3
Local Amplification Factor

FIG. 3. Effects of (a) low interaction probability and (b) local amplification on fractal dimension.

to suggest that local amplification, which corresponds to
biological autocrine mechanisms of growth factor release,
is a possible key determinant of the observed compact
shape of normal capillary networks.

The fractal measurements in tumor vasculature show
that the tumor vessels do not form a compact structure, but
are consistent with measurements for the critical percola-
tion cluster (df = 1.896 and d;„= 1.13) [17,18]. This
observation represents the first evidence for a biological
growth process whose likely determinants are local prop-
erties. Tumor vascular networks, like percolation clusters,
are characterized by loops and voids of many different
length scales (see Fig. 1 and Ref. [19]). Percolation
being a local growth process [4] suggests that there exists
some local property that determines tumor capillary
growth. This local property is hypothesized to be ex-
tracellular matrix (or substrate) inhomogeneity, which
has two biological foundations: (a) tumor tissue does not
possess the regular periodic geometry formed by cells

in normal tissue, and has different phenotypic subpopu-
lations; (b) extracellular matrix is a larger and more
heterogeneous component of tumor tissue than normal
tissue [20,21].

In order to test this hypothesis we modified the previous
model so that a randomly selected subset of all sites
becomes inaccessible to growth. Each lattice site is
assigned a random number R in the range [0,1]. Growth
occurs at all particle reception sites where R ( T, where
T is a preset number in the range [0,1] and represents the
fraction of lattice sites that are accessible to growth. If no
site with R ( T is available for growth, growth occurs at
the site with the lowest R (R ) T)

The model results (Fig. 5) emphasize two points. First,
an increasing local amplification factor (F) is required to
achieve a given fractal dimension as T decreases. Theo-
retically, below the site-percolation threshold for a square
lattice (T ( 0.6), a compact structure cannot be achieved
even as F ~ ~. In reality, F is finite and not every
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FIG. 4. Comparison of the local amplification and the low interaction probability mechanisms: (a) growth time per unit mass
and (b) growth efficiency. Clearly, growth with the local amplification mechanism is both faster and more efficient as the fractal
dimension nears 2.0.
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lattice site is necessarily explored at each growth cycle so
that for F = 3, for example, T ~ 0.7 is sufficient to en-
sure a percolation-cluster type of vasculature. Second, we
see that without local amplification, the structure remains
diffusion limited with df = 1.75, relatively insensitive
to variations in T. This observation further emphasizes
the importance of the local amplification mechanism in
normal and tumor vascular network formation. Figure 5
demonstrates that in the presence of local amplification
and more than 20% inaccessibility, a noncompact struc-
ture reminiscent of tumor vasculature is obtained.

These results support our hypothesis that extracellular
matrix inhomogeneity in tumors is indeed responsible for
the architecture of tumor vasculature. These results im-

ply that in order to modify tumor vasculature significantly,
the underlying substrate properties must also be modified.
Recent in vivo studies [22] on the control of angiogenesis
by manipulation of the local composition of the extracel-
lular matrix support this conclusion.
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