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Scaling Relations for a Randomly Advected Passive Scalar Field
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A recent ansatz for dissipation terms gave anomalous inertial-range scaling exponents (~n't2, n ~ ~)
for the nth-order structure functions of a passive scalar field advected by a random velocity field.
Analysis of a series expansion for the conditional mean of a dissipation term suggests that the
ansatz gives the only possible anomalous scaling. Anomaly of inertial-range scaling is supported
by realizability inequalities on the dissipation field. Predictions for conditional means and structure
functions are compared with simulations.
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The limit of infinitely rapid change in time of a
random velocity field u(x, t) that advects a scalar field
is of interest because many results can be obtained
exactly while, nevertheless, the one-particle and two-
particle diffusivities can be similar to those of more
realistic velocity fields.

A recent Letter [I] considered the structure functions
Sz, (r) = (~AT(r)~ ") of a passive scalar field T(x, t) that

obeys

H[AT(r)] = ((V, + V, , )AT(r)~AT(r))

and ('IAT(r)) denotes the ensemble average conditioned
on a given value AT(r).

Equations (2) for all n are implied by a single equation
for P (5T, r, t), the one-point probability distribution
function (PDF) of b, T(r) [2,3]:

—+ u(x, t) V lT(x, t) = ~V T(x, t). (7)

Here AT(r) denotes T(x + r) —T(x), ( . ) denotes
ensemble average over homogeneous, isotropic statistics,
and ~ is molecular diffusivity. In the rapid-change limit,
the exact evolution equation for Sz, (r) is

BSz„(r) 2 8 d i BSz„(r)l

(3r )
(2)

where d is space dimensionality, i1(r) is the two-particle
eddy-diffusivity scalar defined by

1
n(r) =

2

with 6~~ u(r, t) = [u(x, t) —u(x + r, t)] r/r, and

Jz„(r) = 2n([AT(r)] ' '(V, + V, ,)AT(r)). (4)

The velocity field is switched on at t = 0. T(x, t = 0) is
Gaussian.

Equation (4) may be written

J2, (r) = 2n([AT(r)] " 'H[AT(r)]),

where

H is a function of AT whose form depends on r. It
can be expanded formally as

H[AT(r)] = f~(r)AT(r) + f3(r) [b, T(r)] +, (8)

whence

J2, (r) = 2n[f~(r)S2, (r) + f3(r)Sz„+2(r) + . .]. (9)

Only odd powers appear in (8) because of the assumed
symmetries. How can H[AT(r)] be a nonlinear function
of AT(r) when (1) is linear in T? Both T(x, t) and
V2T(x, t) are linear functionals of the initial Gaussian
T field. But they are different, nonlinear functionals of
the advecting velocity field u. Therefore the statistical
relation between them also is nonlinear. The f, (r)
are averages over T and u of such form that (8) is
homogeneous of degree 1 in T.

If v = 0, only the f~ term survives in (8) at r ~ ~.
This result does not constrain the velocity statistics or
require that the velocity field change rapidly. The crucial
fact is that T is carried by the flow unchanged in value.
V T(x, t) is a nonlocal, linear functional of the initial
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Gaussian field. T(x, t) is a stochastic rearrangement of
the initial field and has the same Gaussian distribution
at any point x. The statistical dependence between two
Gaussian variables a and b has the linear form a =
cb + s, where c is a correlation coefficient and s is
a Gaussian variable independent of b. It follows from
this that V2T(x, t) has the form c(x, t)T(x, t) + s(x, t),
where c and s are functionals of the velocity field but are
independent of T. Hence (V T~T) = cT, where c is an

average over all realizations of the homogeneous velocity
field over the interval (0, t) It. follows that H is linear in
AT(r) if r is large enough compared to any correlation
length of the scalar field.

Consider the truncation of (8) to the f1(r) term at
v & 0. Multiplication of (8) by AT(r), averaging over
ensemble, and the use of homogeneity then provide an
immediate evaluation of f1 (r) and J2„(r):

f1(r) = A(r)/S2(r),

J2„(r) = 2nS2n(r)A(r)/S2(r),

(10)

4&df2 + (d g2) 2 (d C2) ~ (12)

whence $2„= Qndg2 (n » 1) and s'2n = ng2 (d » 1).
Further analysis of (9) requires that two kinds of scaling

be defined: regular scaling, in which $2„= ns'2, and
anomalous scaling, in which s'2n+2 —$2„ is a decreasing
function of n [6]. Regular scaling, with $2„= 2n, holds
in the far-dissipation range r ~ 0 if the relation AT(r) =
VT . r is valid for small enough r. The latter is not an
a priori necessity, but if it does not hold, moments of the
PDF of ~VT ~

of order &2 do not exist.
Consider (2) in steady state over the entire range of r,

with stationarity maintained by adding a rapidly changing
macroscale source term b(x, t) to the right side of (1).
The source induces the term 2n(2n —1)S2, 2B(r) on
the right side of (2), where B(r) is a structure function
that measures source strength [1]. If (9) is taken, (2)
for all n is a set of simultaneous linear equations for
the semi-infinite set of functions S2„(r), with the single
inhomogeneous term 2B(r) in the n = 1 equation. The
coefficient functions are the semi-infinite set f~(r).

where A(r) = V S2(r) —V S2(r = 0). Equation (11) is
the ansatz for J2, (r) proposed in [1]. It is exact for
n = 1, and the S2(r) equation fixes A(r). Equation (11)
was invoked in [1] as an approximation that is valid over
a range of statistics from Gaussian to strongly intermit-
tent. Additional arguments for (11) will be developed
here. Linearity approximations on conditional means like
H(AT), and relations like (11), were studied earlier by
Ching [4] and by Pope and Ching [5].

Assume that there is a scaling range in which
g(r) ~ r& "1' [0 ~ g(g) ( 2], S2„(r) ~ r~'" and

f~(r) ~ r'~. Then (10) and (11) imply $2 = 2 —g(il),
z1 = —$2, and [1]

The B(r) term is negligible in an inertial scaling range
of r; there (2) and (9) yield (cf. [1])

gzn(C2n + d g2) ttdk2[f1 (r) + f3(r)C2n+2, 2nr

+ fs(r)c2 +4,2 r

+ ],
where c „—= S (1)/S„(1)and fz(r) = S2(r)f&(r)/A(r).

The left side of (13) is r independent. There are
two simple ways for the right side to be also. One
is f, (r) = 0 (j & 1), which yields f1(r) = 1 at n = 1

and the anomalous scaling (12). The second is regular
scaling with fj(r) ~ r ' ~' . This corresponds to
the general scaling forms H(b T) = r ~' 2h(AT/rt' 2)

and P(AT) = r ~' p(AT/r~' ), where h and p are
functions so far undetermined. The question of interest
now is whether more general forms of anomalous scaling
are consistent with (13).

The geometric series g(r) = g„oc„r' with a & 0
is independent of r only if all c, vanish for n & 0. This is
established formally by setting derivatives to zero at r =
0. A similar formal result follows for the more general
series g(r) = P„oc, r ", where the n„are positive and
increase monotonically, but nonlinearly, with n. Thus
let A = r ' and set dg/dA = 0 (r = 0) to get c1 = 0,
then let A = r ' to get c2 = 0, and so on. To apply
this to (13), assume that each inertial-range function f~ (r)
is dominated by a single power of r. Pick a particular
(large) value of n and choose these powers to make each
term on the right side of (13) independent of r Then .take
various smaller values of n. For each such n, the right
side of (13) is a series in ascending powers of r and can
be independent of r only if all the f, (r)c2, + 2„vanish
forj )1.

We do not claim a proof that (12) is the uniquely
possible anomalous inertial-range scaling, because we
have not ruled out exotic forms of H for which the
expansions (8) and (13) have no meaning. Moreover, one
cannot assert from first principles that there actually is
power-law scaling of S2„(r) (n & 1) in the inertial range.

Whatever goes on in the inertial range, regular scaling
is expected in the far-dissipation range r ~ 0. The ansatz
(11)cannot hold in this range, because it does not support
stationarity at large n As r ~ 0, g(.r) ~ r . The left
side of (2) goes like n at large n, while the right side
goes like n, if (11) holds. This can be remedied if the
summed series (9) has the form of a prefactor multiplying
an expression like (1 + x)', where x contains some
appropriate power of n If the PDF of ~1VT. ~

is exponential
in form, x ~ n, m = 2 is a possible resolution.

Consider an initial Gaussian state with S2(r) at steady-
state value so that H is linear and (10) holds for all r
The evolution suggested by our analysis is that H[AT(r)]
stays unchanged at r » Zd (8d is a dissipation scale)
but curves up above linearity for r ~ 4d. By (10) at
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r ~ ~, a corollary would be (V T~T) ~ T at infinite
Peclet number, which implies Gaussian one-point PDF
of T. Some deviation from linearity of H[AT(r)] is
expected in an inertial range of only finite extent.

Equation (11) implies scaling relations for dissipa-
tion fluctuations on inertial-range scales. A spatial
partial integration on the left side leads to
(~VT(x') —VT(x)~ ~b.T) ~ (AT~ /Sz(r) at inertial
range r. This can be shown to imply (g(x + r)y(x)) ~
S4(r)/[Sq(r)], where g(x) = ~VT(x)~, or

12,(r) = 2n(2n —1)S2„z(r)A(r) (15)

at inertial range r, which, used in (2), gen-
erates all the S2„(r) by recursion [So(r) = 1].
In particular, S4(r)/[S2(r)] = 3d/(d + gz) and

Sz„(r)/[Sz(r)]" = (2d/gz)" for large n. The result
is regular scaling, but with a fatness less than 3 and
high-order S2„(r) corresponding to a P(AT) with an

absolute cutoff at a value of ~AT~ that is O(QS2(r)).
Neither result is a possible consequence of a Gaussian
velocity field acting on scalar gradients.

Regular scaling therefore needs statistical dependence
between dissipation and inertial scales. Let the inertial
range of wave numbers be divided into bands of uniform
logarithmic width. Each band represents a subfield in x
space, which we model by a Gaussian field multiplied by
a positive, x-dependent modulation factor, whose normal-
ized statistics are independent of band center wave num-
ber. Thus S4(r) = 3c[Sz(r)] in the inertial range, where
c ) 1 is r independent. Then (2) requires that J4(r) ex-
ceed the right side of (15) by a factor =c(d + g2)/d. If
this is so for all Zo» r » Zd, realizability inequalities
require that (g )/g be at least O(ln(Zo/Zd)) as Zo/Zd ~
~: ~(x) must have spectral support, in each decade of the
inertial range, that contributes O(g ) to (gz).

Such behavior of the dissipation field is inconsistent
with regular scaling, which requires that the fatness

(14)

where ~ = (y(x) ) and 4o is a macroscale (source).
Equation (14) describes intermittency of dissipation that
increases with Peclet number in a way suggestive of
Kolmogorov's refined similarity hypothesis [7].

Can the formal regular inertial-range scaling represent
a physical solution? Regular scaling means that intermit-
tency does not increase cumulatively as cascade proceeds,
and this requires that the intermittency increase built in
each cascade step be fully relaxed by the spatial smooth-
ing associated with eddy diffusivity.

A consequence plausibly expected from such total re-
laxation at each step is that the dissipation-range excita-
tion is statistically independent of inertial-range excitation
at infinite Peclet number [8]. This implies

factors of the band-limited scalar fields do not increase
with band wave number: There is no way in which strong
intermittency of dissipation can be supported by cascade
(stretching) unless there is similarly strong intermittency
in the bands near the top of the inertial range. Regular
scaling of S4(r) (and, similarly, higher Sz„) therefore
seems impossible.

Perturbation analysis [9] that exploits the rapid
change of u(x, t) yields also an exact, closed equa-
tion for each order N of single-time moments
0'(12. N) = (T(x~)T(x2) . T(xg)) [10—14]. The
relation of the anomalous scaling we propose to the
W-point equations must wait for a later paper.

Several recent preprints have addressed the question
of anomalous versus regular scaling [12—14]. Chertkov
et al. [12] study the convergence radius of an iterative
expansion of the four-point moment equation and con-
clude that S4(r) scales regularly in the inertial range for
d ~ 3. This conflicts with our inference from realizabil-
ity considerations. Fairhall et al. [13]exploit summations
of renormalized perturbation expansions to examine the
possibility of nonperturbative effects and anomalous scal-
ing. They find support for (11) and (12).

Equation (11) has been tested against simulations [dif-
fuse neutron scattering (DNS)] for d = 2. A rapidly
changing velocity field was simulated economically by the
device of sweeping a frozen velocity field rapidly through
the scalar field (in effect, adding a large uniform, con-
stant velocity to the fiuctuating velocity). This generates
anisotropy, which was reduced to an acceptable level by
sweeping two frozen velocity fields past the scalar field at
right angles to each other. The full results will be pre-
sented elsewhere [7].

The simulation was done on an 8192 grid in a cyclic
box of side 2~, using a fourth-order, purely x-space
integration scheme. The initial field T was Gaussian with
a spectrum ~k / over the range 1 & k ~ 1000 so as
to give a nominal initial scaling range S2(r) ~ r't The.
swept velocity fields had a power-law spectrum over the
range 1 ( k ( 1000 chosen to give a nominal scaling
range rl(r) ~ r3l2, corresponding to gz

= 2 —g(il) =
1/2. Forcing confined to k ( 5 maintained a statistically
steady state. Equations (2) and (11) were integrated
with equivalent initial conditions, parameter values, and
forcing.

Figure 1 shows DNS data for H(AT). The curves
would be lines of unit slope if (10) and (11) were exact.
There is good collapse. The wiggle in H near the origin
appears to arise from the low-k statistical fluctuations
evident at large r in Fig. 2. If the phases of the Fourier
modes of T are randomized for k ~ 20 = 2'/0. 314,
the wiggle is destroyed (see inset of Fig. 1). Linearity
of H(b T) in the inertial range is supported by other
numerical and experimental data for both passive scalars
and thermal convection [15].
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FIG. 1. Measured values of the conditional mean H(AT) for
r = 0.006, 0.012, 0.025, 0.049 (curves 1 —4, respectively);
r = 0.04 is about the middle of the approximate inertial range
in Fig. 2. The inset corresponds to randomization of phases for
k ~ 20. Note that A(r) ( 0.
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FIG. 2. S~o(r)/945r'6oss (DNS, curve 1; theory, curve 2) and
[S2(r)]5/r' (DNS, curve 3; theory, curve 4).

Figure 2 compares Stp(r)/945r~'" and [S2(r)] /rl'" ob-
tained from DNS, and from (2) and (11). Stp/945 = 52
for Gaussian T At g2 =. 0.5, (12) gives s"tp = 1.6085.
In the range of r covered by the DNS curves, theoreti-
cal dissipation-range corrections to (11) are estimated to
be negligible [7]. In our DNS, the support of Stp(r) =
f „P(AT, r) (AT)'" dAT for inertial-range r extends to
values of ~AT~/[52]'l larger than the range, shown in

Fig. 1, for which we have been able to evaluate H(AT)
directly. Good agreement between theoretical and DNS
values of InStp(r)/[Sz(r)]5 suggests that the linearity ef-
fectively extends beyond the range of Fig. 1, but our un-

derstanding of this point is incomplete.
Restrictions on scaling like those for the passive scalar

may also arise in Navier-Stokes (NS) turbulence. Anoma-

ious scaling may require (V Au~Au) ~ —Au~Au~~ for
some q. If q = 0, (12) may be a zeroth approximation to
NS scaling. Nelkin [16] has exhibited a model formula
for exponents with asymptotic square-root dependence on
order. It seems to agree with high-order experimental data
as well as any other current model.

Dissipation in a Burgers-equation flow at large
Reynolds number concentrates at the points of sharp
sawteeth. Such structures yield an analog of (11), but a
linear (V' Au~Au) cannot be inferred because the gz„are
n independent [1,6]. In fact, the sawtooth model suggests
(V' Au~Au) ~ —Au~Au~ for negative, inertial-range Au.
Current simulations by Gotoh [17] support nonlinearity of
(7'2A u ~Au ).
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