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Spatial Correlation in Quantum Chaotic Systems with Time-Reversal Symmetry:
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The correlation between the values of wave functions at two different spatial points is examined for
chaotic systems with time-reversal symmetry. Employing a supermatrix method, we find that there
exist long-range Friedel oscillations of the wave function density for a given eigenstate, although the
background wave function density fluctuates strongly. We show that for large fluctuations, once the
value of the wave function at one point is known, its spatial dependence becomes highly predictable
for increasingly large space around this point. These results are compared with the experimental wave
functions obtained from billiard-shaped microwave cavities, and very good agreement is demonstrated.
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Quantum properties of classically chaotic systems such
as "billiards" and quantum dots are revealed to have re-
markable universal behaviors that depend only on the
generic symmetry of the system, such as the time-reversal
symmetry and/or the spin rotational symmetry [1—3]. It
has been shown that the spectral statistics are well de-
scribed by universal statistical correlations derived from
the random matrix theory [4,5]. (See also [6—8] for re-
views. ) Complementary and comprehensive information
beyond the energy statistics can be obtained by examining
the statistics of chaotic wave functions. For example, the
distribution of the local density in a fully chaotic system
is known to be universal and to obey the Porter-Thomas
distribution [1,9], which is given for a system with time-
reversal symmetry by the equation

1
Po(v) = (6(v —V I

it't, (r)I')) = exp( —v/2),
J27r v

(I)
where P, (r) is the eigenfunction with energy e in a system
with volume V. (. ) means the average over the disorder
and/or irregular potential. Equation (I) tells us that wave
functions fluctuate strongly but in a universal way.

To get further understanding about the nature of chaotic
wave functions, other statistical quantities that can char-
acterize their spatial correlations are desirable and needed.
The average behavior of the amplitude of the wave func-
tion has been conjectured by Berry to be similar to a pat-
tern generated from random superposition of plane waves
[10,11]. Based on this assumption the average amplitude
correlations were shown to be a Bessel function. Recently,
these expressions have been derived within the supersym-
metry formalism [12]. In this Letter, taking a chaotic
system with time-reversal symmetry, correlations about a
particular value of the wave function have been derived
analytically and compared to experiments for the first time.
This is not only a more stringent test of the universality
of chaotic wave functions, but also gives us a handle on

1 2
p + Uo(r) + Ui(r),
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(4)

knowing the behavior of a wave function of the system,
once the wave function is known only at a limited number
of points. Our main object is to investigate the joint proba-
bility distribution function of the density for two different
spatial points (r = ~ri —r2~) defined by

P(vi, v2', r) = (6(vt —V~y, (ri)~')

~(u2 V I P, (r~) I')) (2)
Although the relevant universality class for experiments
that can directly observe the amplitude of wave functions,
such as quantum corrals [13,14] and microwave cavity
[15,16], is orthogonal, only the expression for P(ui, v2)
in the unitary case is known so far [17], because of
technical difficulties. Here we evaluate P(v~, v2, r) for
the orthogonal case by finding special techniques [Eq. (20)
below]. In the microwave cavity, the electromagnetic
field obeys the same equation of motion as a quantum
particle in a two-dimensional billiard. This enables us to
make a direct comparison between the analytical results
and the experimental data. The experimental data for the
wave function density were obtained from thin cylindrical
microwave cavities of the Sinai stadium, by using a cavity
perturbation technique [16,18]. The wave function density
data were earlier seen to be consistent with Eq. (1) [18],
and also in agreement with the expression for density
autocorrelations obtained in Ref. [12]. Once we know
P(v ~, v2, r), we can also find the conditional probability

, (u2 r) P(vl v2, r)/Po(») . (3)
P, (vq', r) describes the distribution of the wave function
of u2 = V

~ P, (r2) ~
at the point r2, provided that v i

=
U~P, (ri)~ at ri. Here we compare the coordinate de-
pendence of the first and the second moments of Eq. (3)
between theory and experiment.

The system under consideration can be expressed by the
Hamiltonian
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where Uo(r) denotes the regular part of a confining poten-
tial, and U~(r) is a random potential that is responsible for
the chaotic dynamics —impurities or "imperfection" of the
shape of the system. We take the ensemble average over
U~(r) by the use of the supermatrix method, which repro-
duces the spectral correlations of Wigner-Dyson statistics
[19,20] and recently was successfully applied to calculate
other universal properties relating to chaotic wave func-
tions [12,17,21,22].

We should remark that, although the supermatrix
method was originally derived from the Gaussian random
potential where the mean free path 8 is much smaller than

the size of the system L, the ergodicity hypothesis [23]
allows us to extend our present result for cases Z —L
by identifying the averaging over space and different
states for a given sample with that over disorder. As
a confirmation of the ergodicity hypothesis we will
demonstrate that the theoretical dependencies for wave
functions derived from a disordered system with 4 « L
are universal and describe very well experimental results
for quantum billiard systems for which 8 —L.

After lengthy calculations, which we will sketch later,
we have obtained the following analytical expression for
P(v~, v2, r) for the orthogonal case:

1
P(vi, v2, r) =

27rf r , 11+ p
Qfz(r) —P2 ( dp) 27rv~v2

dz, ~2 v~ + z v2 + z
(5)

z 2 2 j

1 2pgv&v2 l ( v~ + vzl
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1 —p2 1 —pz f k 1 —p2 I
(6)

where Io(p) is the modified Bessel function and f(r) is
the Friedel function [24]. Note that P(v~, v2, r) depends
on f(r) in a universal way and all coordinate dependence
of P(u&, vz, r) is incorporated only through f(r). In
fact, the function f(r) represents the average correlation
of the amplitude of the wave function [10,11]: f(r) =
V (P,*(r~)P,(r2)). For the case of a flat background
potential in a d-dimensional system, f(r) becomes

f(r) = r(d/2)(2/kr)"~' 'J„(, , (kr)e "~", (7)

where k is the wave vector (e = 6 k /2m), J„(x) is
the Bessel function, and I'(n) is the gamma function.
Note that the envelope of f(r) decays like (kr)
for k ' ~ r ~ Z, and this behavior corresponds to the
representation of a chaotic wave function as a random
superposition of plane waves [10,11].

It should be remarked that the same distribution func-
tion in the unitary case is given by P(v &, v2, r) = p(v~,
v2, f(r)) [17]. Because of two additional integrations in

Eq. (5) the spatial correlations for the orthogonal case are
weaker and the fluctuations are stronger in comparison
with the unitary one.

We first check that P(v&, v2, r) given by Eq. (5) yields
correct limiting behaviors. For remotely separate points
such that f(r) = 0 the fiuctuations of the wave function
density within the given eigenstate become independent,
i.e. , P(v~, vz, r) = Po(v~)Po(v2). In the opposite limit
of close enough points that f(r) = 1, there is an obvious
strong correlation between fluctuations as

Po(vi) (vi —vz)'
P(v(, v2., r) = exp

$8~v, (I —f') 8ui(I —f')
(8)

From Eq. (8), we can extract information about the
gradient of the wave function. By setting P(r2) =

P(r~) + rV'„P(r~) + O(rz), and expanding for small
r, we obtain the joint distribution involving the wave
function and its gradient in any direction n = r/r
Accordingly we find that the gradient of the wave function
along any direction fluctuates independently of the value
of the wave function, and obeys also the Porter-Thomas
distribution,

~(v Vlg(r) I )61 s ~~, I~.O(~)l' I)

= Po(v)Po(~) . (9)

This conclusion is, however, not true for higher gradients
of the wave function.

The conditional probability P, (v2, r) is obtained
straightforwardly with Eqs. (3) and (5). To see how the
fluctuations of the wave functions behave and to compare
between the analytical results and the experiments, the
conditional average (v2), and the conditional variance
are more convenient. Denoting 6 v2 = vz —(v2), ~, we
obtain

(uz)„= 1 + f (r) (vi —1), (10)

((6v2) )„, = 2 + 4f (r) (vi —1) + 2f (r) (1 —2ui) .

(11)

Comparing with results obtained for the unitary case [17],
we find that the conditional average Eq. (10) is exactly
the same. Thus we cannot tell the symmetry of the
system only from the averaged amplitude even if we know
the conditional one. To detect the symmetry, we have
to examine the variance, where there is a factor of 2
difference between the orthogonal and the unitary cases.

In Figs. 1 and 2, we compare the analytical results of
the conditional average and variance with the experimen-
tal data from microwave cavities. The experimental curves
were obtained by picking points in a wave function with
the same value and calculating the average wave function
value a distance r from it on a circle. This quantity was
then again averaged over at least 50 wave functions after
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HG. l. The average spatial dependence of chaotic wave
function squared (vz), =

V(gati~, (rz)i ) whose value Vip, (r)i
at a point r1 is known to be vt [r = irz —r1i, V is the volume,
and hzkz/(2m) = e). The theoretical prediction Eq. (10) is
compared with experiments from the microwave Sinai stadium
cavity for v1 = 7 ( ) and v1 = 3 (0). Inset: Representative
eigenfunction of the chaotic Sinai stadium.
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FIG. 2. Comparison of the conditional variance of a wave
function ((BV2) )„[6V2 = Vz —(Vz), and Vz = Vi(/l, (rz)i ]
as a function of the distance from point ri and a reference
value v1 [v1 = Vitii, (r1)i ] between the theory [Eq. (11)] and
the experiment for v1 = 7 ( ) and vi = 3 (0).

rescaling the wave number to obtain better statistics. Fig-
ure 1 shows the plot of (vz)„ in Eq. (10) with experimen-
tal results for v~ = 2 and vi = 7. Very good agreement
is seen for both sets. In fact, agreement is excellent for
all values of vi above 1, below which the noise and errors
in the measurement of the wave function measurements
lead to qualitative differences. In Fig. 2, the comparison
of the data to the expression in Eq. (11) was done. Again
one sees an excellent agreement with experimental errors
of 5%, which is the level of experimental accuracy.

According to Eqs. (10) and (11), we can say, as in
the unitary case [17], that large fluctuations of the wave
function have some striking structure that is not present
for small fluctuations. For v i » 1 the ratio of the

0 (r1)t/ .* (rz)
r1, rz

e —e ~ iy/2' (15)

We can obtain q„ in terms of F, by the relation [27,28]

(n —1)!(m —I)!, y i"+
q„,„= ' '

lim
2(n + m —2)! y-o 5 )

F, , (16)

since the leading contribution to F, for small y comes
from the state whose energy e coincides with e.

can be evaluated by the supermatrix method. How-
ever, since we cannot utilize a simple expression like
Eq. (12)of Ref. [17]for the orthogonal case, we are forced
to expand F„directly by the Friedel function f(r) as (see
also Refs. [12,21])

F„(r;y) = n! m! QC, (n, m) f ~(r). (17)

variance to the average square is

((»2)')-, 2 I + 2v1f'=21 —f (12)
(Vz)2 (1 ~ V f2)2

Therefore at r ~ s, where the "correlation length" $—
k v1 » k, the variance ((6vz) ), can be very

1/(d —1) 2

small in comparison with (vz), . It means that once we
know that the wave function ip(r)i is equal to v1 at r1,
it is highly likely to have a value (vz)„—f v1 at rz
for r ( $. In this sense, the large I]uctuation behavior
of the wave function becomes highly predictable. In
contrast, for small fluctuations v2 «1, we easily see
that ((6vz) )~, = 2(vz), , indePendent of v1. We also
find directly from Eq. (5) that Iluctuations turn out to be
independent, i.e., P, (vz., r) = I/~vz. Although more
careful evaluation gives us a correlation length s that
ensures independent I]uctuations for the region r ) s,
g in such an evaluation turns out to be very small, i.e.,

g —k trav, «k '.
These behaviors are qualitatively the same in systems

both with and without time-reversal symmetry. Therefore
we can say that this is a generic property of chaotic
wave functions. Also, in the semiclassical description
of chaotic systems, periodic and closed orbits are known
to be associated with large values of the wave functions
iP(r)i [25,26]. In this respect, our present results may
imply that there is some structure present in these orbits.

Now let us proceed with the derivation of our main re-
sult in Eqs. (5) and (6). To evaluate the joint distribution
P(vt, vz, r), we work with its moments,

q. (r) = V™(IO.(rt)l'"IA. (rz)l'") = (v1vz ) (13)

q„ is known to be closely related to the moments of the
exact retarded and advanced Green functions 6

n —I
(r y) „+ ([Gy (~1 &1)] [+y(rz rz)] )

(14)
where v is the average density of states (DOS) and
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Using the same notation for the supermatrix elements as in
Ref. [19], and defining Q' —= (—I)'Q'" (for a = 1, 2),
the coefficient Cq(n, m) in Eq. (17) is given in terms of
Q-supermatrix elements:

C„(n, m) = g ((Q34)"'(Q4s) - (Q33)'- )g
(1 + 6 b)k;+„""k bt p b! l b!

(18)

where the summation is taken over all the possible com-
binations of non-negative integers k,b, p b, l,b, which
satisfy the condition 2q = g, ~b(kab + p„b + l,b), m

g, li, = 2kll + Z gb k b
= 2pll + p gb p b, and

n —Z. l.z = 2kz2 + Z.&b k.b
= 2p2z + Z.&b p.b.

The symbol ( )g denotes an integration over the saddle
point manifold, i.e.,

(. )g —= DQ ( ) exp[ —(qr7 i46)StrAQ], (19)

where the definitions of A and Str as well as the structure
of the Q matrix are found in [19].

In principle, the averaging ( )g in Eq. (18) can be
carried out by using the parametrization of Ref. [19].
However, we found it technically unfeasible to evaluate
this expression in such a general form. Fortunately, to
get Eq. (16) one needs only know F„(y ~ 0). The
leading contribution in this limit can be extracted by
transforming parameters A; = 1 + u;QA(y for i = 1, 2
in the parametrization given in Ref. [19]. By calculating
the leading order of small y, we And the relation

Qab Qa'b' Qab' Qab'

Reconstructing P(vi, vz, r) from the moments q„com-
pletes the derivation of our main result Eqs. (5) and (6).

In conclusion, we have presented analytical results for
universal statistical quantities that characterize the coordi-
nate dependence of chaotic wave functions of the system
with time-reversal symmetry. Further we have demon-
strated excellent agreement between the theoretical results
and experimental results of microwave cavities. The spa-
tial correlations demonstrate the long-range Friedel os-
cillations of wave function density and the existence of
extended spatial regions of high wave function density.
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for a, b = 1, 2 and c, d = 3, 4. Substituting Eq. (20) into
Eq. (18) and combining with Eq. (16), we finally obtain
after integrating over the Q matrix,

(2n —1)!!(2m —1)!!f q(r)
q. (r) = . (21)2n™—2q (n q) t (tn —q) I (2q)
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