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Delocalization of Electrons in a Random Magnetic Field
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Delocalization problem for a two-dimensional noninteracting electron system under a random

magnetic field is studied. The Chem number is used to characterize the extended states in such a
system, and by studying finite-size scaling of the density of extended states, an insulator-metal phase
transition is revealed. The delocalization phase is found at the center of the energy band separated from
the localized band tails by critical energies F, Both the localization exponent and the critical energy
F, are shown to be dependent on the strength of the random magnetic field.

PACS numbers: 71.30.+h, 71.50.+t, 71.55.Jv

The Anderson localization theory [1,2] predicts that
all states in a two-dimensional (2D) electron system are
localized in the absence of a magnetic field. The quantum
Hall effect (QHE) system is a first example of 2D systems
that show the existence of truly extended states [3,4]. In
this latter case, the presence of a magnetic field breaks
the time-reversal symmetry and destroys constructive
interference of the backward scattering [2] so that it is
possible for electrons to propagate forwardly.

Recently, an intensive attention has been attracted to
the delocalization problem in a 2D random-magnetic-field
system. This problem is closely related to the half-filled
QHE system [5,6] as well as the gauge-field description
[7,8] of the high-T, superconductivity problem. However,
despite a lot of numerical and theoretical efforts, the issue
of delocalization still remains controversial. Analytically,
Zhang and Arovas [9] have recently argued that the
field-theory description, which corresponds to a nonlinear
sigma model of the unitary class without a topological
term due to zero average of magnetic field, should have
a term representing a long-range logarithmic interaction
of the topological density (due to the local magnetic
field). This singular term may lead to a phase transition
from a localized state to an extended one. But it is
contradictory to the conclusion that all the states are
localized, obtained by Aronov, Mirlin, and Wollle [10]
in a similar approach. Earlier numerical works [11—13]
also have given conAicting results. Recently, with a larger
sample size, Liu et al. [14] have found a scaling behavior
of the localization length near the energy band tail, which
can be extrapolated to give an insulator-metal transition
energy F, Nevertheless, a metallic phase has not been
directly confirmed since no scaling behavior has been
found there. In the possible metallic region, an even
larger sample size may be needed in order to distinguish
whether the states are really extended or very weakly
localized [11] with the localization length much longer
than the sample size.

Thus it would be desirable to study this delocalization
problem from an alternative numerical method that di-
rectly probes topological properties of a system with less
finite-size effect. Thouless and co-workers [15] and oth-

ers [16,17] have found that delocalization property of a
wave function in the presence of a magnetic field can be
well characterized by its associated quantized Hall conduc-
tance. Nodes of an eigenstate wave function with nonzero
Hall conductance can move freely and cover the whole real
space when one continuously changes the boundary con-
dition [17]. Such a covering of real space by the nodes
has been related to a topological invariant integer (known
as the first Chem number), which is identical to the quan-
tized number of the Hall conductance (in units of e2/h).
Thus a nonzero Hall conductance describes the extensive-
ness of a wave function. In contrast, a zero Hall conduc-
tance state will always be localized in 2D with the presence
of weak impurities (Anderson localization). In the QHE
system, Huo and Bhatt [18] have calculated the boundary-
phase-averaged Hall conductance for each eigenstate of a
noninteracting electron system in the presence of strong
magnetic field, and extrapolated the density of extended
states (with nonzero Hall conductance) to the thermody-
namic limit (sample size varying from 8 to 128). They
have found that all extended states collapse to a single en-

ergy F, at the center of the Landau band, with a local-
ization length s ~ I/~F- —F-, ~" and localization exponent
v = 2.4 in agreement with previous known results.

In the present random magnetic field case, the total Hall
conductance on average has to be zero. But one still finds
nonzero quantized Hall conductances for eigenstates at
each random-Aux configuration. Because of the general re-
lation between a nonzero Hall conductance and delocaliza-
tion of the corresponding wave function [15],one can use
this topological quantity to characterize delocalized states.
A similar point of view also lies in the heart of the field-
theory approach of Zhang and Arovas [9]. In this Letter,
we shall use this topological property in our numerical ap-
proach. By studying the sample-size dependence of the
density of extended states, which are states with nonzero
Hall conductance, an insulator-metal phase transition will
be revealed. The extended states are found near the cen-
ter of the energy band, and the states at the band tail are
all localized with both localization exponent and transi-
tion energy ~E, depending on the random magnetic field
strength.
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We consider a tight-binding lattice model of nonin-
teracting electrons under a random magnetic field. The
Hamiltonian is defined as follows:

H = Pe 'C(C~ + Wtc(C(.EQi '

(Ei &
l

Here c; is a fermionic creation operator, with (ij)
referring to the two nearest neighboring sites. A magnetic
flux per plaquette is given as P = g& a;i, where the
summation runs over four links around a plaquette.
We study the case in which P for each plaquette is
randomly distributed between —hp~ and hp~, and ~;
is also a random potential with strength lw;l ~ w. For

simplicity, we assume no correlations among different
plaquettes for P and different sites for w; (white noise
limit). The total flux for each random configuration
is always chosen to be zero. The finite system is
diagonalized under the generalized boundary condition
lW(i + Li)) = e' ~ lW(i)) ( j = 1, 2 represent x and y
directions, respectively) with lattice width Li = L2 = L,
and a total number of lattice sites (sample size) is 3V =
L X L (the lattice constant is chosen to be the unit).

The Hall conductance can be calculated by using the
Kubo formula. One may relate a Hall conductance to each
eigenstate l

I),

ie h ~ (mlp ln)(&lpYII) —(mlpi ln)(&lp lm)

2m .~ (e —e„)2

where p is the velocity operator defined as p
i g;(c;+,c;e"'"' —c; c;+,e "' ') with r = x or y.
The total Hall conductance for the system is given by

(m)o H = g & o xy at zero temperature, with eF as the
Fermi energy. o.h will always be zero on average in the

(m)case of a random magnetic field. However, 0 xy can be
nonzero for each random-Aux configuration because of
the breaking of time-reversal symmetry. As pointed out
before, a state with nonzero (quantized) Hall conductance
represents an extended state in the thermodynamic limit,

whereas a zero Hall conductance state should always be
localized in 2D.

Direct calculation of matrix elements in formula (2) is
time consuming. We can make a unitary transformation
lC&) = e ' "i e ' '~i l'Il') such that the new state l4)
satisfies a periodical boundary condition. The Hamilton-
ian (1) is transformed in terms of a;;+ ~ a;;+, + 0, /L
with r = 1 (x) or 2 (y). Then the boundary-phase aver-
aged conductivity can be related to partial derivatives of
the wave function in the following form [15]:

( )
ie2 i', B4 (g), g2-, i) BC* (0), Oz., i)

0 0 i
J

(3)

where the closed path of the integral is along the boundary

of a unit ce110 ~ 0), 02 ~ 277. oxy in (3) can be shown
(m)

[15,16] to be quantized in units of e /h. Here 4 is
required to be an analytic wave function in 2D 0 space.
Starting from the wave function 4(0, 0;i) defined at one
corner of the boundary in 0 space, the phase of the wave
function 4 can be uniquely determined [15] by a process
of parallel translation, first along the 0~ axis and then
along the 02 axis as

(4a)

pe*(e, , e, ;i) ( ' "') =0. (4b
802

Numerically we have diagonalized the Hamiltonian with
the boundary angle varying in whole 2m X 2~ phase
space for each given random Aux and potential configu-
ration. At each step, 0~ may only change by a very
small value such that 84/BO can be well approximated
by h4/BEE (usually AO ( 2rr /100, which is adjustable
in our numerical calculation to give a reliable result). By
constructing a wave function satisfying conditions (4),
the Hall conductance averaged over the boundary angle

is determined in terms of (3) for each eigenstate. An
eigenstate with nonzero Hall conductance is defined as
an extended state, and the corresponding density of states

p„,(e, DV) is obtained as a function of energy e and
sample size M, which is averaged over random fiux-
potential configurations (200—2000 random configurations
depending on sample size).

The total density of states p (e, 3V) and the extended one
p,„,(e, 3V ) are obtained as a function of energy e and lat-
tice size 3V (3V = 16, 36, 64, 100, and 144). The total
density of states does not change much with lattice size,
but the extended part of the density of states shows dis-
tinctive behaviors at different energy regions separated by
critical energies F, The ratio p,„,(e, M)/p(e, 3V) is
presented in Fig. 1 around E, (with random—magnetic
field and impurity strengths chosen as hp = 0.6m and w =
1.0, respectively). All the curves in Fig. 1 cross at a fixed
point e = —E„which is independent of the lattice size
within the error bars. At energy e ( —F„the extended-
state density is continuously suppressed, and can be ex-
trapolated down to zero as lattice size becomes infinity (see
below). On the other hand, in the regime —F, ( e ( F„
p„,/p monotonically increases with lattice size and even-
tually saturates. Therefore, Fig. 1 clearly shows a metal-
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FIG. 1. The ratio of the density of extended states over the
total density of states is plotted as a function of energy (around

E, = —3.—3) for a different sample size M.

insulator transition at critical energies E, (the curves in
Fig. 1 are symmetric about e = 0).

Let us consider in detail the localization at the band
tail e ~ —E,. One may define two quantities character-
izing the localization effect: a ratio Ro of the number of
extended states divided by the total number of states at
energy e ( E, region—, and a mean width AE of the
extended states in such a regime, both of which presum-
ably will approach to zero in the thermodynamic limit.
Here Rp ——f ' p„,(e) dE/ f ' p(e) de and (AE)z =
f '[~ —(—E,)]'p„,(e) de/ f ' p„,(e) d~. Rp and
AF versus the sample size are shown in Fig. 2 in a
log-log plot at ho = 0.6 and w = 1.0. The data follow
two parallel straight lines nicely, suggesting the follow-
ing power-law behavior: Rp —3V ' and AE —3V
with x = 0.2 ~ 0.02. Such a scaling law ensures the
absence of the extended states outside the energy range
(—E„E,) in the thermodynamic limit. In the localized
region, the localization 1ength is a characteristic length
scale (scaling parameter [19]), and for a finite-size sam-
ple with a width I the states with a localization length

s ) L should appear as extended ones. If the localization
length goes as I/~e —(—E,)~' when a —E„one ex-
pects I/(AE) —L, or AE —3V '~ " (Ref. [18]). One
also has Rp ~ AEp( E„3V) ~ AE.—So the finite-size
scalings of Rp and AE in Fig. 2 imply a power-law be-
havior of the localization length s: s ~ I/~e —(—E,) ~'

with v = 1/2x = 2.5 ~ 0.3.
At E, ( s (E„a mon—otonic increase of p,„,/p

with sample size is manifestly metallic behavior. It is
consistent with the behavior of d(gl. /L)/dL ) 0 ($1.
is the so-called decay length and $1/L describes the
extensiveness of the system) found in the metallic region
of the 3D system and the 2D system with spin-orbit
interaction (symplectic class) [19,20]. In the present
approach, the quantity p„t directly characterizes ex-
tended states and can be extrapolated to a finite value at
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FIG. 2. Ro, the number of extended states divided by the total
number of states at (e ( —E,), and 6E, the mean width of the
band of extended states in the same energy region, vs sample
size 3V on a log-log scale. Fo is a mean width of the band
of total states at (e ( E,) A—ll the . data are fitted into two
parallel straight lines.
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FIG. 3. N,„,/No, the number of extended states over the total
number of states within the energy region (—E, , E, ), vs sample.
size 3V . The ratio is extrapolated to a finite number R,. = 0.68
in the thermodynamic limit, and solid line is a best fit to
the data.

a large sample size limit. One may also define a ratio

Next/Np = f 'E p „t ds/ f '& p da, namely, the totalFc Fc

number of extended states divided by the total number
of states within ( E„E,). —N,„,/Np is found to saturate
to a finite value R, —0.68 in the following manner:
N,„,/Np —R,. ~ N i' (y —0.—3), which is shown in
Fig. 3 by a log-log plot (hp = 0.6, w = 1.0). A finite R,
in the thermodynamic limit is a direct evidence for delo-
calization. (R, ( 1 in the thermodynamic limit suggests
that eigenstates with a nonzero Chem number will become
degenerate with eigenstates of a zero Chem number. But
coupling s between them should make all the states
delocalized at the same energy [21]. Thus, the R, 4 0
region in the thermodynamic limit should represent a
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fully delocalized region. ) The parameter R, plays a
similar role as the inverse of the effective mass renormal-
ization factor [22], which has been argued to be a better
scaling parameter than conductivity for the discussion
of low-dimensional Anderson-localization problem [22].
Whether this delocalization transition is a Kosterlitz-
Thouless type with the power-law decay of correlation
functions, as predicted by Zhang and Arovas [9], is not
clear here and needs a further investigation. Recently,
the fluctuations of the Hall conductance in a random-
magnetic-field system have been studied [23], and the
root mean square for such fluctuations is predicted to be
in the order of e /h. We have found (rrtt) —0.4(e /h),
which is indeed consistent with the analytic analysis.

Very similar behaviors have also been obtained at
other random-fiux strengths: hp = 0.4 and 0.5 (with
w = 1.0). Correspondingly, E, =~3..7 and 4-3.5,
while v = 1.25 ~ 0.3 and 1.75 ~ 0.3 respectively. The
results suggest a nonuniversal localization exponent v,
which increases with hp and is consistent with a larger
v (—4.5) obtained at hp ~ 0.7 in Ref. [14]. The reduc-
tion of the metallic region ( E„E,) —indicates that the
extended states are less favorable at larger hp. With the
increase of hp we find that p„t becomes less sensitive to
the sample size. When hp ) 0.7, rip, „,/rlN is relatively
small around the center of the energy band and a larger
lattice size is needed in order to get conclusive results
about delocalization. We also have checked the effect of
the disorder strength ~ on the delocalization. It turns out
that the delocalization is monotonically weakened with
the increase of N, as expected, and is strongly suppressed
beyond w = 2. With the decrease of w, however, many
more computation steps are needed on the average over
the boundary-phase space in order to reach the exact
quantization of the Chem number.

Since we study the density of states for the extended
states characterized by the topological properties of wave
functions (Hall conductances), the finite-size effect is
expected to be less important in comparison with other
approaches. The reason is that as a boundary-condition
averaged Hall conductance, the Chem number becomes
less sensitive to the detailed distribution of eigenstates.
The latter, in contrast, usually has a stronger size de-
pendence and plays an essential role in other physical
quantities like the Green's functions. The existence of the
fixed points E„which are independent of lattice size
within the error bars, as well as the finite-size scalings on
two sides of ~E, indeed support this expectation.

In conclusion, we have unambiguously demonstrated
the existence of a delocalization region for a noninter-
acting 2D electron system under a random magnetic field.
The critical energy E, of a metal-insulator transition has
been determined. Two branches of finite-size scaling are
found in both metallic and localized regions, and the re-
sults are extrapolated to the thermodynamic limit. The
localization length at the band tail (e ( E„e) E,)—

behaves like g —I/~e ~ E, ~", with both E, and v vary-
ing with the strength of the random magnetic field.
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