
VOLUME 75, NUMBER 12 PHYSICAL REVIEW LETTERS 18 SEPTEMBER 1995

Orientational Ordering in Spatially Disordered Dipolar Systems
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This Letter addresses basic questions concerning ferroelectric order in positionally disordered dipolar
materials. Three models distinguished by dipole vectors that have one, two, or three components are
studied by computer simulation. Randomly frozen and dynamically disordered media are considered.
It is shown that ferroelectric order is possible in spatially random systems, but that its existence is very
sensitive to the dipole vector dimensionality and the motion of the medium. A physical analysis of our
results provides significant insight into the nature of ferroelectric transitions.
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Recently, spatially disordered dipolar materials have
attracted considerable attention. Diluted lattices [1—3],
fluid phases [4,5], and amorphous frozen ferrofluids [6]
have been examined experimentally [1,2,6], theoretically
[3,7 —11], and with computer simulations [3—5]. It has
been shown that in the absence of long-range positional
order the strong spatial-orientational coupling intrinsic to
dipolar forces can lead to interesting new phase behav-
ior. For example, frozen ferroAuids containing magnetic
particles in a nonmagnetic solvent exhibit magnetic irre-
versibilities reminiscent of randomly frustrated magnetic
spin glasses [12). On the other hand, computer simula-
tions of simple dipolar fluids clearly indicate the existence
of a ferroelectric liquid crystal phase [4,5].

A simple interpretation of these observations might be
as follows. In frozen ferrofluids, the quenched positional
disorder creates random frustration, and the system be-
haves as a spin glass [12]. The fluid systems [4,5] differ
from the frozen case in that the strongly coupled transla-
tional and rotational degrees of freedom are in full thermal
equilibrium. This allows the development of short-range
spatial correlations resembling those seen in the ferroelec-
tric tetragonal-I lattice [13], and, consequently, ferroelec-
tric order develops in the liquid phase [4]. In view of these
observations, and recalling that perfect crystals exhibit fer-
roelectric or antiferroelectric long-range order depending
on the lattice symmetry [13,14], one might argue that spe-
cific spatial correlations are required for ferroelectric order.

In recent papers Zhang and Widom [11]have put for-
ward a mean field theory for spatially disordered dipolar
systems. They argue that the long-range nature of the
dipolar forces plays a key role in yielding ferroelectric or-
der, and that this is not explicitly included in the simple
interpretation given above. More importantly, Zhang and
Widom propose that, despite the strong frustration present
in randomly frozen systems, long-range ferroelectric order
is possible above a critical density. Their work implies
that the spin-glass behavior observed in ferrofluids [6]
results from the low concentration of magnetic particles,
whereas the ferroelectric liquid crystalline phase found in

computer simulations of dipolar fluids [4,5] arises because
of the high particle density considered. In the present Let-
ter we examine the validity of this argument and address
the general question: "Can long range -ferroelectric or
der spontaneously arise in a system without fin tuned po--

sitional corI"elati ons.~"

We investigate the behavior of dense spatially disor-
dered dipolar systems using constant temperature molecu-
lar dynamics (MD) and Monte Carlo (MC) simulations.
Systems where the dipole vector has one, two, and three
components are considered. The first two of these are
commonly referred to as the Ising and XY models, and for
notational simplicity we shall refer to the three component
dipole as the XE'Z model. In all cases the pair potential,
u(12), is of the generic form

u(12) = 4e(~/r)t2 + uoo(12),

where 4e(cr/r)'2 and

uoo(12) = —3(IL& r) (imz r)/r + iM& IL2/r

are the soft-sphere and dipole-dipole interactions. The
parameters e and cr are the fundamental units of energy
and length, gs; is the dipole of particle i, and r is the in-
termolecular vector. The long-range dipolar interactions
were taken into account using periodic boundary condi-
tions and the Ewald summation method assuming a per-
fectly conducting surrounding continuum [4,15—17]. The
existence of a ferroelectric phase can be detected by cal-
culating the average polarization P per particle defined
as P = (1/N)(~g, , IL; d~), where d is a unit vec-
tor in the direction of the total instantaneous moment,
M = g, & IL;, and N is the number of particles in the
system.

It is convenient to characterize dipolar soft-sphere sys-
tems by the reduced density, p" = No. 3/V, the reduced
temperature, T* = keT/e, and the reduced dipole mo-
ment, p,

* = (p /eo. )', where V is the volume of the
sample, T is the absolute temperature, and kh is the Boltz-
mann constant. All results explicitly presented are for
p,

' = 4 and p" = 0.8. This density is well within the
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FIG. 1. The polarization P at T*;„vs 100/N for the randomly
frozen Ising (circles), XY (squares), and XYZ (triangles).
Results are included for 108 (XYZ only), 256, 364 (XYZ only),
500, and 864 particles.

range for which Zhang and Widom predict a ferroelec-
tric phase [18]. For p,

" = 4 and p* = 0.8, Zhang and
Widom predict a ferroelectric phase for the Ising case if
T* ~ 35.2 and for the XYZ model if T* ~ 4.8.

We first consider frozen systems. Suitable spatially
disordered configurations were generated by carrying out
an MD simulation of a soft-sphere fiuid at T* = 10.5 and
p"' = 0.8. Fluidlike configurations were then selected at
random for dipolar rotational MD simulations. Following
this approach we could obtain a frozen state at a much
higher density than is possible from a random parking
algorithm. Unfortunately, it is impossible to have a truly
"random" and structureless spatial configuration [i.e., with
the radial distribution function g(r) equal to 1 for r ~ o
[11]]at this density. However, at T" = 10.5 the local
structure in the soft-sphere fluid is weak and very short
ranged.

Polarization results for randomly frozen systems are
shown in Fig. 1 [19]. The XY and XYZ values were
obtained with MD simulations. The discrete nature of
the Ising model renders it inappropriate for MD so MC
calculations were used. The average polarization obtained
at the lowest temperature where equilibrium could be
achieved, T;„, is plotted vs I/N. The values of T*;„
are 10.0, 4.0, and 3.5 for the Ising, XY, and XYZ models,
respectively. Below these temperatures MD or MC runs
for the same configuration started from perfectly ordered
and disordered states (i.e., two replicas) did not converge
to the same result within a reasonable computation time
(i.e., about a week). Possibly with greater computational
effort T;„could be pushed a little lower, but the values
given above are well within the range where Zhang and
%'idom predict a ferroelectric phase. For the Ising model
the equilibrated system at T' = 10.0 is nearly 100%
polarized. Moreover, for the Ising case the polarization at
T*;„exhibits very little number dependence and certainly
does not appear to vanish in the thermodynamic limit.
This, together with the plot of P vs T* and heat capacity
calculations (see Fig. 3 below), strongly suggests that
ferroelectric order develops spontaneously in the spatially

disordered Ising system with the transition occurring at
T* = 25 for p* = 0.8. We note that this transition
temperature is much lower than the value (T* = 35.2)
predicted by Zhang and Widom.

The situation for the XY and XYZ models is very
different. Although significant polarization was observed
at finite temperatures, P decreases monotonously with
increasing system size and appears to approach zero for
an infinite system. Furthermore, the behavior of various
spin-glass correlation functions and susceptibilities [12]
suggests that both systems are entering an anisotropic
spin-glass phase at nonzero temperature [20], and that the
observed polarization for the XY and XYZ models is due
to a combination of short-range ferroelectric correlations
and finite-size effects. Test calculations for the XYZ
model using a denser frozen soft-sphere configuration
(i.e., p" = 1.05 [18], T* = 10.5) also showed no long-
range ferroelectric order. In brief, for the randomly frozen
XY and XYZ models we find no evidence of a ferroelectric
state in the thermodynamic limit. This clearly disagrees
with the ca1culations of Zhang and Widom, which for the
XYZ model predict a stable ferroelectric phase well within
the temperature-density range considered here.

In order to gain further insight into the nature of fer-
roelectric order (or the lack thereof) in spatially random
systems, we consider a "toy model" where the transla-
tional motion is completely decoupled from the dipolar
interactions. The soft-sphere fIuid acts as a "substrate"
that moves at a fixed translational temperature indepen-
dent of the embedded dipoles. The dipoles themselves
interact and are equilibrated at a different rotational tem-
perature. Of course, the "equilibrium" state achieved by
the dipoles will depend on the underlying motion of the
substrate. This model is similar in spirit to those used
in recent studies of nonequilibnum phase transitions in
magnetic systems subject to Levy Ilights [21]. It must be
emphasized that this technique is presented only as a use-
ful simulation tool, and we do not imply any real physical
mechanism for the decoupling. The moving substrate is a
means of simulating dipolar systems in a dynamically ran-
dom medium that lacks any specific spatial correlations
that may favor ferroelectric ordering. The translational
diffusion rate of the substrate can be controlled by the
particle mass. Extrapolation to infinite mass should pro-
vide information about the randomly frozen system.

In Fig. 2, we have plotted P vs T* (rotational) for the
XYZ model. Here, the decoupled substrate is a soft-sphere
fluid again at p* = 0.8 and T*(translational) = 10.5. It
is convenient to introduce the reduced mass m" = m/m',
where m' is a reference mass defined such that the
reduced simulation time step /t. t* =—(e/m'o)'~ At =.
0.00125. Figure 2 includes results for m* = 1, 5, and
10. Spontaneous polarization develops for all systems,
and the temperature at which P begins to grow decreases
with increasing mass. For example, from the P vs
T* plot there appears to be a ferroelectric transition
at T* = 2 for m' = 1. To verify that this is a rea1
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FIG. 2. P vs T" (rotational) for dynamically random XI'Z
systems. The squares, triangles, and circles are for I"' = 1,
5, and 10, respectively. The error bars represent one estimated
standard deviation. gB,„d„vs T" (rotational) is shown in the
inset for N = 64 (squares), 108 (triangles), and 256 (circles)
particles.

thermodynamic transition, we have calculated the Binder
ratio [12], gB;„dp~: z 2(IMI )((IMI ), for systems
with 64, 108, and 256 particles. A plot of gq;„~„vs T*
(see Fig. 2, inset) shows a clear crossing, and hence a
transition at T = 1.9. Simulations were also carried out
with I' = 20, but no significant orientational order was
found above T"' = 0.1. Very slow convergence prevented
calculations at lower temperatures.

We have also investigated dynamically disordered XY
and Ising systems. The XY model behaves much like the
XYZ system described above. For the Ising case, rotational
dynamics cannot be used, and a suitable Monte Carlo
scheme that allowed the substrate to move independently
of the Ising dipoles was employed. P vs T* results for
m"' = 1, m* = 5, and the randomly frozen system (m* =
~) are shown in Fig. 3. We see that for the Ising model the
ordering behavior is essentially independent of the mass
and that the results for the dynamically disordered system
with I" = 5 1ie very close to those for the randomly
frozen case. Heat capacities obtained by differentiating
the average dipolar energy with respect to the rotational
temperature are also shown in Fig. 3. The randomly frozen
and I" = 5 results are very similar and indicate a phase
transition at T' = 25.

The dependence of the ferroelectric transition tempera-
ture on particle mass is shown in Fig. 4. The transition
temperatures were estimated from the heat capacities, and
results are included for the XY and XYZ models. Results
for the Ising system are not plotted because the transition
temperature is essentially independent of the mass. %'e
see that as the mass increases the transition temperature
drops for both the XY and XYZ models. As noted ear-
lier, for large masses and low temperatures convergence
becomes prohibitively slow, but it seems reasonable to as-
sume that the graph would simply continue with the tran-
sition temperature approaching zero in the infinite mass
limit. This is consistent with the fact that we did not find
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FIG. 3. P vs T" (rotational) for the Ising model. Results are
shown for dynamically random systems with m" = 1 (squares)
and m* = 5 (triangles) and for the randomly frozen case
(circles). The heat capacities per particle, C /N, are plotted
vs T" (rotational) in the inset.
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FIG. 4. The mass dependence of the disordered to ferroelec-
tric transition temperature TF (rotational). The squares and tri-
angles are results for the XY and XYZ models, respectively.
The values of TI*; were obtained from plots of the heat capacity,
C, /N, vs T" (rotational) and a typical example (XYZ model,
m* = 1) is shown in the inset. The error bars represent esti-
mated uncertainties in the peak position.

a ferroelectric phase for randomly frozen systems at finite
temperatures.

The present and previous results can be interpreted
as follows. It is useful to divide the local field, E~„,I,
experienced by a particle in an infinite medium into
two parts such that E~„,~

= R + E, where R is a
reaction field contribution [9,15] and E is everything else.
The reaction field arises from the long-range nature of
the dipolar interactions; it is independent of the spatial
correlations and favors ferroelectric order. The remaining
contribution, E, is sensitive to positional correlations and
may or may not favor ferroelectric order. Thus if R
dominates, a ferroelectric phase is to be expected, but
if E is important the existence or nonexistence of a
ferroelectric phase will depend on the details of the spatial
correlations. This simple picture allows us to rationalize
the various systems considered. For fully coupled dipolar
Iluids [4,5] the short-range spatial correlations (and hence
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E) can adjust (i.e., become tetragonal-I-like) in order
to favor (or at least allow) a ferroelectric state. On
the other hand, for randomly frozen systems the spatial
correlations cannot adjust, and at equilibrium E dominates
R, frustrating the formation of a ferroelectric phase except
for the Ising case. Apparently, the discrete nature of
the Ising model makes it much less susceptible to the
development of disordering fields than are the XY and XYZ
systems. The reaction field dominates in the Ising system
and gives rise to a ferroelectric state.

The behavior of the dynamically disordered systems
can also be understood. If the translational diffusion of
the substrate is sufficiently fast compared to the dipolar
reorientational time, the extent of spatially dependent
frustrating correlations is limited, R can prevail over E,
and a ferroelectric phase is possible. As the mass of a
substrate particle is decreased, the translational motion
becomes faster and the above condition is met at higher
and higher rotational temperatures. Thus the observed
transition temperatures increase with decreasing mass.
As the substrate particles become sufficiently light, the
transition temperature is determined only by the reaction
field and hence becomes independent of mass. In fact,I = 1 gives essentially this limiting behavior, and
reducing the mass further has little effect on the transition
temperature.

In conclusion, the answer to the question raised at the
outset is a subtle one. Our results for the frozen Ising
system and for the dynamically disordered XY and XYZ
models clearly demonstrate that it is possible to have fer-
roelectric states without fine-tuned positional correlations.
However, they also show that if a ferroelectric phase is to
exist in a positionally random system, the long-range spa-
tially independent correlations arising through the reaction
field must dominate the shorter-ranged position-sensitive
correlations, which generally act to frustrate ferroelectric
order. For the Ising system the discrete nature of the in-
teraction (i.e., there is just not much opportunity for fa-
vorable interactions among neighbors) limits the buildup
of short-range disordering correlations, and there is a clear
ferroelectric transition. For the dynamically random sys-
tems the orientational correlations opposing ferroelectric
order are reduced by the motion of the substrate result-
ing in a ferroelectric phase. On the other hand, for the
randomly frozen XY and XYZ models we find no indica-
tion of a ferroelectric phase at finite temperature. Rather,
the disordering fields dominate, and these systems appear
to form nonferroelectric spin glasses at low temperature.
Evidence for this is provided both by our direct simula-
tions of frozen systems and by the extrapolation of the
dynamically disordered results to infinite mass. This con-
clusion must remain a little tentative because direct MD
simulations at very low temperatures are not practical.
Nevertheless, a ferroelectric phase in the randomly frozen
XY and XYZ models seems highly unlikely.
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