
VOLUME 75, NUMBER 12 PHYS ICAL REVIEW LETTERS 18 SEPTEMBER 1995

Experimental Study of Quasistatic Brittle Crack Propagation

O. Ronsin, F. Heslot, and B. Perrin

(Received 5 May 1995)

This Letter presents an experimental study of controlled brittle crack propagation in thin glass strips,
using a thermally induced stress field. For straight and oscillating crack propagation, three regimes are
observed, controlled by a set of characteristic lengths. Direct measurements of the thermal field allows
meaningful comparison with a model for straight symmetric crack based on two-dimensional elasticity.
This strongly supports a velocity indepe-ndent fracture energy For. the oscillating onset, it is shown that
the Cotterell-Rice criterion is not valid here.

PACS numbers: 62.20.Mk, 46.30.Nz

Quasistatic brittle fracture is an old topic [1],which has
recently attracted a renewed interest, both experimentally
[2] and theoretically [3—5]. By using a thermal field
to induce stress [2,6], it is possible to obtain a steady
propagating crack, localized within a thermal gradient
created between a hot oven and a cold bath. The recent
work of Yuse and Sano [2] demonstrated nicely the
successive instabilities of such a localized crack.

This Letter presents a detailed experimental study of the
onset of straight and oscillating crack propagation over a
previously unexplored low-velocity range, along with an
analysis of the relevant parameters. A comparison with
theoretical predictions based on two-dimensional linear
elasticity is successfully performed for straight cracks, and
a value of the surface energy y of the glass is deduced.

The experimental setup, inspired by the work of Yuse
and Sano [2] (Fig. 1), has been designed in order to allow
low-velocity experiments and long samples. 0.5 to 1 m
long soda-lime glass plates of various thicknesses e (0.13,
0.6, and 0.9 mm) and widths L (from 3 to 400 mm) are
used. The plate, mechanically scored at the edge to seed
the crack, is moved at constant velocity V in the range
0.01 to 10 mms ' by a translation stage driven by a
stepping motor, from a hot to a cold region separated by
a distance h = 3 to 10 mm. The hot oven consists of a
slot of thickness 1.1 mm between two heating elements
regulated at a temperature T+ adjustable between 40 and
250 ~ 0.1 C. The cold region consists of a bath of
circulating water of constant mean level. The circulation
is created to maintain a constant temperature T of
the water, regulated within ~1 C over the range 15 to
25 C. The interface between the glass plate and the water
surface may form a meniscus of fiuctuating size (capillary
length 3 mm). To obtain a better control of the gap h
(~0.1 mm), a constant dynamic contact angle (about 90 )
is obtained by silanizing the glass plate [7].

A steady thermal profile is related to the temperature
difference b, T = T+ —T, to the distance h between
the two thermostats, and to the driving velocity U,
which advects and localizes the thermal gradient near the
cold bath over a thermal diffusion length d, h

= D/V,

where D is the thermal diffusion coefficient of the glass
(0.47 mm s ').

This steady thermal regime is reached after an initial
transient dependent on both thermal diffusion in the plate
and finite heat resistance of the coupling between the
temperature baths and the plate. This necessitates a length
of at least 50 mm of glass plate for a typical velocity
U = 0.1 mms

The temperature field is independent of the width L of
the plate, and induces thermal expansion in the sample.
But the elastic energy stored in the glass plate for a
given thermal field (AT, h, and V fixed) depends on I,
which is then used as a control parameter. For a given
thermal profile (V, h, hT), the crack behavior is studied
as a function of the width L: For widths below a critical
value L„nocrack grows. At larger widths, and as long as
L stays below another critical width L„„astraight crack

Water

FIG. 1. Schematic setup of the experiment. A cracked glass
plate of width L is driven at constant velocity V through a hot
oven at temperature T + AT and in a cold bath of water at T.
The resulting thermal gradient is imposed by the temperature
difference AT, the distance h between the two temperature
baths, and the driving velocity V. In such a configuration, the
crack tip can be trapped in the gradient, enabling the control of
the fracture velocity.
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propagates in the middle of the plate at constant velocity
—V relative to the plate (the crack tip position is fixed in
the thermal field). Above L,„,the crack path becomes
wavy, showing very regular oscillations just beyond L„,
(inset of Fig. 2) and becoming less and less regular as
L is increased, with possible period doubling, rupture of
symmetry, and eventually crack nucleation for very large
widths. Experimentally, for a given velocity, the first
regimes are covered by using a single glass plate of slowly
decreasing width (relative variation of width vs length less
than 1%).

A typical "phase'* diagram in the (L,V) space is obtained
and presented in Fig. 2 for DT = 135 C and h = 5 mm,
showing these "phases" (no propagation, straight propaga-
tion, and wavy propagation) separated by the two curves
L, (V) and L„,(U).

Three distinct V dependencies are observed and shown
to be related to the characteristic lengths h, e, and D/V
(see Fig. 3).

At low velocities (V & D/h), the critical width has lit-
tle dependence on V, the thermal profile being essentially
controlled by the gap h which is larger than the thermal
diffusion length d, I, .

The intermediate regime (D/h & U & D/e) is related
to the advection of the thermal gradient near the cold
bath over the length d, I, . This localization increases the
induced stress and a smaller width is needed to obtain a
propagating crack.

For large velocities (V ) D/e), the thermal diffusion
length becomes smaller than the thickness of the plate, the
temperature is no longer homogeneous across the thick-
ness, and the fracture process becomes three dimensional.
This change (2D ~ 3D) is clearly illustrated on the frac-
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FIG. 2. Phase diagram in the (L,V) control parameter space
for a glass plate of thickness e = 0.9 mm, with h = 5 mm
and AT = 135 'C. The L„(V)curve (~) corresponds to the
arrest of straight crack propagation, while the L„„(V)curve (O)
corresponds to the bifurcation to oscillating crack propagation.
Lines are guides to the eye. Cracked glass strips corresponding
to the three phases are shown in the inset.
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FIG. 3. L, (V) curve for the first bifurcation: experimental
points (~) for e = 0.9 mm, h = 5 mm, and AT = 135 'C; the
two arrows correspond to V = D/h and V = D/e, separating
three regimes of L, (V) (i) h controlled, (ii) D/V controlled,
and (iii) e controlled. The effect on the L, (V) curves obtained
by changing e appears for e = 0.14 mm, h = 5 mm, and
b, T = 135 'C (4), and by changing h for h = 10 mm,
e = 0.9 mm, and AT = 135 C (0). The thin broken lines
(— —,---) correspond to the theoretical L, (V) curves, both
obtained with a two-dimensional elastic model, using the
Griffith criterion and a surface energy y = 1.6 J m . The
curve (— ), which diverges at low velocities, is obtained
in the nonphysical limit h ~ ~. The curve (---) is obtained
when taking into account the finite value of h. The value of
y is determined so as to get a fit between the experimental and
theoretical (---) curves at very low velocities.

ture surface, smooth at low velocity and rough at high
velocity.

Let us focus on the two-dimensional low-velocity
regimes. It appears that the low-velocity h-controlled
transition presents a weak dependence on V. A bump
with a maximum L, '" is present in the L, (V) curves. For
a plate of constant width, chosen between L, (V = 0) and.
L, ", the crack cannot propagate in a given range of V.
This effect of forbidden velocity gap may be illustrated
by studying the dynamics of the crack tip and will be
presented in detail elsewhere [8].

Let us compare these experimental results to a two-
dimensional linear elastic model. The problem of an
infinite elastic strip with a semi-infinite straight crack in
its middle with a one-dimensional thermal field applied
was first solved by Marder [3], who obtained an analytical
expression for the elastic energy 6 released per unit
length of virtual crack propagation and per unit thickness
as a function of the crack tip position z„z (G is called
the energy release rate). For a given loading condition
[thermal profile T(z) and plate's width L], it is then
possible to evaluate numerically the energy release rate
G(z„z), as described in Ref. [3]. Until now, only the
theoretical limiting case of infinite gap h was considered,
leading to a temperature profile only determined by the
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& 0(z)0(h —z) + 0(z —h), (1)

where 0(z) is the step function.
A corresponding curve of the energy release rate

G(z„t,) is shown in Fig. 4 for a temperature profile and for
three different plates' widths. The condition of propaga-
tion is now determined by the Griffith energy balance cri-
terion [1], which consists of the comparison between the
elastic energy released G with the energy needed to create
the two resulting new surfaces 2y where y is the surface
energy of the glass. This criterion has been generalized
to dynamic crack growth by introducing a velocity de-
pendent phenomenological surface energy [called fracture
energy I'(V)] to take into account dissipative effects such
as plasticity. For G „(I (V), where G

„

is the maxi-
mum of G(z), there is no position of the crack tip where
enough elastic energy is released to create the surface,
and no propagation is possible. For G „)I (V), there
are two equilibrium positions for the crack tip, but only
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tip

L=L

(L

cold bath
crack tip position Z.

tip
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FIG. 4. Typical dependence of the energy release rate 6 vs
the crack-tip position g„.z, calculated for a given thermal profile
(kT, h, and V fixed) for three different sample widths. The
part in the cold bath (with a minus sign) corresponds to a
compression of the crack faces on each other. This state is
of no physical interest because the model supposes stress-free
boundaries. The application of the Griffith criterion gives the
equilibrium position of the crack tip as the intersection of the
curve G(z„~)with the horizontal line G = 2y. A minimum
sample width L, is necessary for crack propagation, when the
maximum G „ofG(z„~)equals 2y. For L ( L„the crack
cannot propagate. For L )Z„two equilibrium positions are
possible for the crack tip; the stable one is in the decreasing
part of G(z„~).

thermal diffusion length d, h [3,4]. This assumption of
infinite h is not valid anymore for velocities smaller than
D/h In. order to extend the range of comparison between
theory and experiment to low speeds, we consider a more
realistic profile:

1 —exp( —z/dih)Tz =AT
1 —exp( —h/dth)

the one near the hot bath (for which dG/dz ( 0) is sta-
ble. Steady crack propagation stops when G,„=I (V),
which corresponds to the critical value L, (V.)

The theoretical curve L, (V) thus depends on I", which
is unknown. We will first assume that I (V) is a constant,
equal to the also unknown static value y. Using the
assumed temperature profile (1), and adjusting the value
of y so that the theoretical value of L, at low velocity
(typically 0.01 mms ') fits the experimental data, we
find 2y = 3.2 Jm, assuming a Young modulus of
E = 7.2 X 10' Jm and a linear coefficient of thermal
expansion of n = 0.77 && 10 K ' for glass. The curve
L, (V) calculated in this case [I'(V) = const = 2y =
3.2 Jm ] is plotted in Fig. 3, also showing the limiting
case h ~ ~. The agreement is qualitatively good, and,
in particular, we recover the bump at low velocities,
which can thus be understood on the basis of this model:
Since a uniform temperature gradient gives rise to no
stress in a free sample [9], stresses in the glass plate are
induced by the curvature of the temperature field. This
stress field extends over a length that scales with the
width of the plate. A crack is attracted towards regions
of negative curvature (d T/Bzz ( 0) and is repelled
by positive ones (the crack faces tend, respectively, to
be forced open or forced closed). For V = 0, strong
curvature is localized near z = h (where cl T/Rz ( 0),
and corresponds to a strong G,„.As V is increased,
but still small compared to D/h, the negative curvature
field is advected and smoothed. The effect is a decrease
of G „.Higher velocities localize and increase negative
curvature near the temperature boundary g = 0. The
effect is a reincreasing of G „;the crack tip then
stabilizes near the cold bath. For certain values of I., this
variation of the maximum of G will cross the constant
critical value 2y, prohibiting propagation within a band
of velocities.

The discrepancy between the experimental data and the
predictions of the model may be attributed to the use of
a constant surface energy y, which cannot account for
eventual crack velocity-dependent dissipation. If now, for
each experimental point of the L, (V) curve, the fracture
energy I' is adjusted so as to make the theoretical point
coincide with the experimental one, the procedure leads to
a velocity dependence of I, shown in Fig. 5. Ho~ever,
a more plausible way to interpret the data is first to
question the validity of the assumed ideal temperature
profile. This profile (perfect baths) overestimates the
second derivatives (it assumes discontinuities of the first
derivatives of the temperature at z = 0 and z = h), and
the above adjustment for I thus overestimates the value of
the fracture energy. The real thermal profiles have been
measured experimentally for thick plates (e = 0.9 mm).
A thermocouple is inserted and glued inside a 0.35 mm
diameter hole drilled into the side of the thickness of the
plate, with a depth of 5 mm. The temperature profiles
measured for V ~ 0.3 mm s ' show that the thermostats
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FIG. 5. Fracture energy of the glass sample as a function of
the crack velocity, extracted from the experimental threshold
for propagation, using an idealized (0) or experimental (~)
temperature profile. The use of the real temperature profile
leads to a velocity independ-ent fracture energy, i.e. , a surface
energy of y = 0.7 ~ 0.2 J m

are not perfect: no discontinuity of the gradient at z = 0
and h is observed. Instead, around z = 0 (z = h), a
smooth change of the temperature over a characteristic
distance of 1 mm (2 mm) is measured. This is related
to the thermal impedance of both temperature baths.
These profiles were fitted with analytical functions and
included in the model. The resulting values for the
fracture energy as a function of the velocity are plotted
in Fig. 5 and have been checked to be independent of the
temperature difference AT between the two baths. This
now gives a fracture energy that is independent of the
crack velocity (up to the experimental precision). This
constant value over more than one decade of velocities
can thus be considered as the surface energy of the glass

y = 0.7 Jm, and is not unreasonable with respect to
quoted values in the literature, measured directly [1] or
based upon interpretation of nonsteady crack propagation
[10]. This constant value of y was checked to be
consistent with the measurements of the equilibrium crack
tip position between the hot and cold baths [8].

For the oscillatory threshold L„„(V),the striking simi-
larity between the L, (V) and L„,, (U) experimental curves
suggests that, as for the description of the three differ-
ent regimes for straight cracks, the instability mechanism
is related to stresses induced by the thermal field, and so
that the same characteristic lengths are involved to sepa-
rate various regimes.

The velocity-independent fracture energy has been
obtained here in the case of straight cracks, where the
two-dimensional elastic model restricted to symmetric
loading conditions (straight crack path in the middle of
the sample) should rightfully apply. However, analyzing
the oscillation threshold (experimental data of Ref. [2]),

Marder [3] extracted a fracture energy rapidly decreasing
with the velocity (50 Jm drop in fracture energy for an
increase in velocity of 1 mm s '). This result was based
on the path stability criterion of Cotterell and Rice (CR)
for straight symmetric cracks [11]. To check this criterion
with the present data and with the measured temperature
profile, we have performed similar calculations. Using
the previously determined value of y = 0.7 Jm, this
criterion gives values of L„,no more than 5% higher than
the corresponding L„instead of the measured 70%. The
CR criterion does not hold here, in the present geometry.
This may be due to the infinite medium assumption
used to derive it. Other criteria [4,5] have recently been
proposed, but further work using the real experimental
thermal profile will be needed to check their compatibility
with the present experiment.

The work presented here strongly supports a coherent
interpretation of the experimental data on straight crack
propagation in terms of (i) a constant surface energy y,
and (ii) a set of characteristic lengths. The measurement
of the real experimental temperature profile is essential
to get a meaningful comparison between the experiment
and the theory. The study of the oscillations demonstrates
that the onset does not follow the Cotterell-Rice criterion.
The physical understanding of this instability may now be
attacked from a firm basis, with the successful description
of straight crack propagation.
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