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Viscosities of the Gay-Berne Nematic Liquid Crystal
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We present molecular dynamics simulation measurements of the viscosities of the Gay-Berne
phenomenological model of liquid crystals in the nematic and isotropic phases. The temperature
dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear
viscosity, are in good agreement with experimental data. The bulk viscosities are significantly larger
than the shear viscosities, again in agreement with experiment.

PACS numbers: 61.30.Cz, 64.70.Md

Ever increasing computer power has made simulations
of simple, yet realistic, molecular models of liquid crystals
a feasible enterprise. With the aid of computers it is possi-
ble to study the effects of molecular shapes, sizes, and in-
teractions on macroscopic behavior. Three types of liquid
crystal models have been used in simulation work. The
first is the Lebwohl-Lasher model [1], a lattice model for
rotators. This model can be used to study the isotropic-
nematic transition as a rotational order-disorder transition
in an effective crystalline solid. Another class of mod-
els which has received much attention and includes the
translational degrees of freedom of a liquid crystal uses
hard particles of various shapes that interact solely by
excluded volume effects [2,3]. These hard body mod-
els exhibit very rich phase diagrams including smectic,
columnar, and cubatic phases. Finally, in recent years
there has been considerable numerical study of the Gay-
Berne (GB) system [4], which is a fiuid of pointlike par-
ticles, each carrying a unit vector u that mimics the long
molecular axis. The particles interact via an anisotropic
Leonard-Jones potential, which depends on the relative
orientation and location of a pair of molecules. This sys-
tem displays rich behavior like the hard body models, but
also includes attractive forces. These latter forces play
an especially important role in the formation of smectic
phases, which are more readily formed in the GB system
than in the hard body models. The GB model has also

been extended to include chirality [5] and to model dis-
cotics [6]. Unlike the hard body models the GB system
can also exhibit thermotropic transitions.

Previous studies of the GB system have focused on the
phase diagram [7—9], single-particle translational and ro-
tational dynamics [10],and heat fiow [11]. tin this Letter
we report on numerical measurements of the viscosities of
the GB system as a function of temperature (other authors
have measured the viscosities for a purely repulsive GB po-
tential at a single temperature [12]). We find a number of
results which indicate that the GB model exhibits the prin-
cipal dynamical features of a real nematic liquid crystal.
The temperature dependence of the shear viscosities and
the rotational viscosity below the isotropic-nematic tran-
sition is qualitatively similar to what is observed in ex-
periment [13—16], including the nonmonotomc behavior
of one of the shear viscosities. The two bulk viscosities
are an order of magnitude larger than the shear viscosities
in agreement with ultrasonic measurements [17]. We also
find that long-time correlations of the director exhibit the
expected Brownian motion due primarily to the finite size
of our system.

The GB potential is modeled to give the best fit to the
pair potential for a molecule consisting of a linear array of
four equidistant Lennard-Jones centers with a separation
of 2o.o between the first and fourth sites (subsequent work
[9] examined different fits). The GB potential is given by

U(u), u2, r) = 4e(u), u2, r)
r —tT u~, u2, r + o.o

12 ~o 6

r —~(u, , u, , r) + ~o

where u ~, u2 are unit vectors giving the orientations of the
two molecules separated by the position vector r. The
parameters e(ut, u2, r) and o.(ut, u2, r) are orientation
dependent and give the well depth and intermolecular
separation where U = 0, respectively. The well depth is
written as

e(ut, u2, r) = so~ (u&, u2)~ (ul u2 r) (2)

ui + r u2)
+ A (ui u2)

(r . ui —r . u2)
1 —x'( i 2)

The shape anisotropy parameter g is given by

(4)

(5)

e(u), u2) = [1 —~ (ut u2) j (3) where o., and cr, are the separation of end-to-end and
side-by-side molecules, respectively. The parameter ~' is
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given by V

k8T
dt (o-~3(t) o-~3(0)), (10)

The ratio of the well depths for end-to-end and side-by-
side configurations is e, /e,

We simulated a system of % = 256 particles using the
molecular dynamics technique. The ratio o., /o. , was set
equal to 3, the ratio a, /e, = 5, and exponents v = 1 and

p, = 2. These values yield the best fit to the linear ar-
ray of four Lennard-Jones centers [4], though other values
have been used [8,9]. The moment of inertia was cho-
sen to be 4moo, as in Ref. [8]. We used cubic periodic
boundary conditions, and cut off and smoothed the poten-
tial at 3.8oo. The equations of motion were solved using
the leap-frog algorithm with integration time step b t
0.001 in reduced units [At* = At(moo/eo) . 't, where m

is the mass of the molecule]. Translational and rotational
temperatures were controlled using the Nose-Hoover ther-
mostat [18]. The initial configuration was generated by
locating nearly parallel GB molecules on the sites of an
fcc lattice at low scaled density, p*(—= Noo/V) = .0.10.
We carried out a long run (20000 iterations), which re-
duced the nematic order parameter to a value of 0.12, and
disordered the system translationally. The system was
then gradually compressed at constant scaled tempera-
ture T*(= k&T/ao) =—3.0 to a density p"' = 0.32. Fi-
nally, at constant density the temperature was lowered in
small steps to the isotropic-nematic transition temperature
and below. At this stage longer simulation runs (180000—
300000 iterations) were performed to obtain the values of
the viscosities.

The dynamical description of a compressible nematic
requires six viscosities: three shear viscosities, v~, v2, and

v3 two bulk viscosities, v4 —v2 and v5,' and a director
rotational viscosity, y~. To calculate these viscosities
from correlation functions of the stress tensor and the
director, we transformed to a coordinate system where the
3 axis is parallel to the average orientation of the director,
and the 1 and 2 axes are perpendicular to the director.
The elements of the stress tensor are defined by

(o i2(t)o i2(0))) (8)

V

kg) T
dt (o iz(t)~ip(0)), (9)

where V is the volume of the system, p' is the linear
momentum of molecule i, and r'~ and f;j are, respectively,
the relative position vector and force between molecules
i and j. The five viscosities v~, v2, v3, v4, and v5
associated with shear and compression are then given in
terms of Kubo-like formulas [19],

V
dt[([~33(t) —~(t)] [~33(0) —o.(0)])

2kgT

V

kgT
dt (o-(t) o.(0)),

where

V

kgT
dt (o-33(t)cr(0)), (12)

rr(t) =
2 [~ii(t) + ~zz(t)] . (13)

The time-correlation functions appearing in Eqs. (8)—
(12) were evaluated by averaging over successive time
origins [20]. The components of the stress tensor were
evaluated first in the cubic coordinate system (with axes
parallel to the sides of the cell) where we defined periodic
boundary conditions and then transformed to the director
coordinate frame.

In order to compare our simulation results with experi-
mental measurements of shear viscosities, we applied a
magnetic field H along the direction of nematic order-
ing, with g, H2 = 1.0 in our reduced units (~, is the
anisotropy in the magnetic susceptibility). Experiments
typically measure Miesowicz viscosities [13],

gi = v3 + 4yi(1 —A) + A@i, (14)
]

rtZ = v3 + 4 Yi(1 —A), (15)

'g3 = &2. (16)

The parameter A is a reactive coefficient [19] that deter-
mines the response of the director to shear flow. Because
we have not yet performed a direct shear How experiment
we do not have a value of A for the GB system; in p-
azoxyanisole (PAA) [19] A = 1.15 ~ 0.10. We have as-
sumed that A is unity in the GB system and computed
Miesowicz viscosities from our measurements; a 10%
change in this value of A will not alter the qualitative
features of our results. Results for the three Miesowicz
shear viscosities are shown in Figs. 1 and 2; results for y~
alone are given in Fig. 3. The large value of H needed to
stabilize the director motion smears the nematic-isotropic
transition. At sufficiently high temperatures where the ne-
matic order parameter is low (see the inset of Fig. 1) the
system is essentially isotropic with large director Auctua-
tions, and we have plotted the average of the two shear
viscosities g2 and g3 as a single isotropic viscosity. Be-
low the temperature T = 2.0 where the nematic order pa-
rameter becomes substantial we note that g2 decreases at
first as the temperature is lowered and then rises. This ef-
fect has been observed experimentally in PAA [13,14], N
(4'-methoxybenzilidene)-4-(n-butyl) aniline (MBBA) [14],
and in the cyanobiphenyl homologs [16]. The viscosity
g2 is associated with shear flow parallel to the director,
so its value drops when the nematic order becomes appre-
ciable. Its subsequent rise is not fully understood. Like-
wise the fact that g3 ~ g2 below the transition has also
been observed [13,14], and deep in the nematic phase the
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Correlations in the director rotational motion and the
value of the rotational viscosity y~ are best studied by
measuring the correlation function:

where

C(t) = ([Bn(t) —Bn(0)j ),

Bn(t) = z[ni(r) + nz(t)t.

(17)

(18)

1 ~ 3&inuip ~upi
N, . 2 )

n =1,2, 3,

(19)

The director components n~ and n2 are the eigenvectors
of the order parameter tensor,

10 15 20 25 3.0

FIG. 1. The isotropic shear and two of the Miesowicz viscosi-
ties in reduced units as functions of the scaled temperature T*,
in the presence of a magnetic field. The inset shows the ne-
matic order parameter S as a function of T* for the same value
of magnetic field.

ratio F13/rI2 has been found to be approximately 1.5, in
both PAA and MBBA, in good agreement with our re-
sults. The temperature dependence of v~ or g~ has not
been measured, but the value of v~ deep in the nematic
phase of PAA is known [17] and is comparable to the
value of q3. We find v~ = 2.25 and 1.55 (reduced units)
at T* = 1.2 and 1.4, respectively. We have also mea-
sured the bulk viscosities at these latter temperatures and
find v4 = 29.0 and 14.1; v5 = 38.33 and 15.9 (reduced
units), respectively. Experimental measurements of the
bulk viscosities deep in the nematic phase of PAA and
para-azoxyphenetole (PAP) [17] also show values that are
an order of magnitude larger than the largest shear viscos-
ity. The temperature dependence of the bulk viscosities
has not been explored experimentally. Numerically deter-
mining the bulk viscosities is more time consuming than
determining the shear viscosities, so we have not explored
their full temperature dependence.

corresponding to the two lowest eigenvalues.
If the director motion is diffusive (Brownian motion),

then C(t) at long times will follow:

C(r) —2y, 'r,
and the value of y~ can be extracted with excellent
statistics [21]. This behavior was observed in our system
(see Fig. 4) at sufficiently long times, and is sensible
given the magnetic field and especially the small system
size. At shorter times the director motion obeys the form
C(t) —t approximately, which is to be expected for
ballistic behavior. For much larger system sizes and small
magnetic fields we would expect this latter behavior to
persist to larger times due to the presence of massless
Goldstone modes [22], even though the microscopic
director motion is no longer ballistic. This Goldstone-
like behavior has been reported by Zhang et al. [23], in
Monte Carlo studies of the Lebwohl-Lasher lattice model
where very large system sizes are readily studied. The
temperature dependence of y~ is given in Fig. 3 in the
form of an Arrhenius plot, i.e., y~ ~ exp(E/kiiT), where
F is an activation energy. We have also attempted to
fit our data to the form yi ~ S exp(E/k~T), where S is
the nematic order parameter; this form fits experimental
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FIG. 2. The third Miesowicz viscosity, g~, which is 2 to 3
times larger than the other two viscosities; compare Fig. 1.
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FIG. 3. The rotational viscosity y& in reduced units as a
function of scaled temperature indicating the activated form of
the dependence.
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data [24,25] very well. However, our limited number of
data points are fit almost equally well with or without the
factor of 5, so we cannot state definitively which form is
more accurate.
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