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Hydrodynamic Description of Granular Convection
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We present a hydrodynamic model that captures the essence of granular dynamics in a vibrating
bed. We carry out the linear stability analysis and uncover the instability mechanism that leads to
the appearance of convective rolls via a supercritical bifurcation of a bouncing solution. We also
explicitly determine the onset of convection as a function of control parameters and confirm our picture
by numerical simulations of the continuum equations.

PACS numbers: 47.20.—k, 46.10.+z, 81.35.+k

Granular materials in a container subjected to vertical
vibrations display interesting nonlinear dynamical behav-
iors [1—5]. Nothing really happens for I = Ace 2/g ( 1,
where A and ~ are the amplitude and the frequency of
the oscillations and g is the gravitational constant. For
1 ( I, however, the granular materials collectively move
up and down, which we term uniform bouncing [6], until
I reaches the critical value I, beyond which such a uni-
form bouncing motion becomes unstable and permanent
convective rolls develop inside the bulk [3—5]. Recent
studies have revealed further complexity of this problem
for values of I much larger than 1, where, e.g. , bubble
formation [5] has been observed. Current efforts to un-

derstand the experiments of granular dynamics [3,5] have
mostly focused on large scale molecular dynamics (MD)
simulation [4]. While successful in reproducing convec-
tion cells and some of the experimental results, such studies
have limitations in understanding the analytic structure of
the instability mechanism and/or its subsequent dynamic
evolution. There have been a handful of attempts in the
past to derive continuum equations for granular dynam-
ics notably by Jenkins and Savage for rapid granular fIow
problems [7] and by Haff for vibrating beds [8], but these
studies have been mostly confined either to simple cases of
one-dimensional oscillations in an infinite system, where
pressure inside the grains has a hydrodynamic pressure gra-
dient in steady states [8], or to cases where an explicit as-
sumption has been made regarding the Gaussian velocity
distribution of grains [7], which has been shown to break
down in a dense granular system [9]. There also has been
a recent attempt by Bourzutchky and Miller [10]who have
utilized the Navier-Stokes equation along the similar lines
of Haff [8] and have reproduced numerically convective
rolls. However, we find it difficult to imagine that the hy-
drodynamic pressure term (pgz) exists to cancel the grav-
ity term inside the granular materials that undergo vertical
vibrations.

The purpose of this Letter is twofold: We first
propose a dynamic model that is simple enough to make
progress in analytic studies, yet captures, in our opinion,
the essence of the granular dynamics of vibrating beds.

Second, we demonstrate that the correct way of studying
the convective instability is to carry out the stability
analysis around the bouncing solution and explicitly
determine the onset of convection as a function of external
parameters. We will also present numerical results to
confirm our predictions.

Equations of Motion —Our s.tarting point is the recog-
nition that the most fundamental aspect of the vibrating
bed, apart from the obvious fixed bed solution with no ex-
ternal driving, is the existence of a uniform bouncing of a
collection of particles. Such a bouncing solution can be
either a solid block inside the bed or a fluidized state with
a slightly expanded volume yet with no internal degrees of
freedom. This assumption is consistent with observations
in MD [4], where surface fluidization rapidly spreads out
into bulk regions when surface fluidization is suppressed.
In such a case, the bouncing solution can be represented
by a motion of an elastic ball on a vibrating platform. For
small I, no exotic motion such as chaotic motion is ex-
pected to occur for such a ball [11]. We further assume
that the restitution constant of "the center of mass" in the
collection of particles (or granular block) is zero, because
the random motion of particles inside the granular block
may suppress the systematic elastic behavior. In such a
case, the relative position of the ball with respect to the
bottom plate A(t) is given by

A(t) = I (sinto —sint) + I costo(t —to) —z(t —to)

(1)
in the units of g = ~ = 1, where the ball starts to
bounce at to on the bottom plate, whose position at
time t is given by I sint in the experimental frame.
The bouncing solution is then described by the relative
speed between the plate and the ball: V„~ —= dh(t)/dt
Since A(t) cannot be negative, the ball launched up-
ward on the plate at to falls back to the plate at t~ [i.e.,

A(t&) = 0] and stays there until I = to + 27r from our
assumption of the zero restitution constant. The ball is
then relaunched and obeys (1) again. For later use, we
determine (to = sin '(1/I ), tt) for different values of
I . For example, (to, tt) = (1.181,2.88225) for I = 1.1
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a, p + V (pv) = 0, (2)

1
B,v + (v V)v = z(I sint —1 —A) ——VP

P
+ —[V v + gV(V . v)], (3)

1 2

R
where z is the unit vector in the vertical direction and
A is a Lagrange multiplier. A = 0 for free motion and
A = I' sint —1 for the stationary state. Note that the first
term in (3) is due to the uniform bouncing and the third
term is the energy dissipation effectively represented by
the Reynolds number R and the bulk viscosity g. Now
the exact form of the pressure P in (3) is unknown for
granular materials. Unlike Quid, for granular materials
in a container supported by the side walls the pressure
inside the bulk seems to saturate [1,12]. In such a case,
the only contribution to the granular pressure would result
from the hard sphere repulsion, which might be effectively
represented by the van der Waals equation

p= '
(4)

1 —bp'
where T = (v ) is the granular temperature [8] and b is
a constant of order unity. Note that Eqs. (2) and (3) are
precisely the compressible Navier-Stokes equation with
two modifications: first, the hydrodynamic pressure term
is absent and is replaced by the van der Waals form (4),
and second, the gravity term thus survives in the vibrating
bed and has been effectively modified to g —Ace sint
in physical units. Notice that the term I'sint appears
since we have used the box-fixed frame. We now analyze
Eqs. (2) and (3).

Linear stability analysis —(a) Fixed .bed solution: a
fixed bed is a container filled with grains with no external
driving. In this case, the contact force balances out
gravity and the net force acting on each grain is zero. So,
we use A = I sint —1 in (3). In this case, the solution
with constant density p = pp and zero speed v = 0 is
stable.

and (to, t~) = (0.524, 5.18) for I = 2.0. When we ex-
pand A(t) around to we obtain h(t) = (I /6) cos(to) (t-
to)3 ) 0, where cos(to) ) 0 from the launching condition
d2V„,~/dt2 ) 0. Hence there is no solution of 3 (t) = 0
around t = tp except for t = tp. Therefore the bounc-
ing motion starts from a finite ti —tp. One can now
readily derive the equation of motion for the vertical co-
ordinate z for the bouncing motion of a granular block:
z = (—1 + I sint)0( —1 + I sint), where 0(x) = 1 for
x ) 0 and 0(x) = 0 for otherwise.

In order to describe the motion of a granular block
in the presence of internal degrees of freedom, such as
rotation and/or translation, we define two coarse-grained
dynamical variables: the density p(r, t) and the velocity
v(r, t) of the granular system. In a box fixed frame, p and
v then should satisfy the continuity and the momentum
equation

(b) Linear stability of a uniform bouncing solution: In
order to discuss the stability of the uniform bouncing solu-
tion, p = po and v = (0, 0, V„~(t)), against fiuctuations,
we set p = pp + pL and decompose the velocity into
the vertical and horizontal components, vt = (vz t, wt)
with v~ = v~L and w = V„~(t) + wt. We then sub-
stitute these into dynamic equations (2) and (3) and in-
troduce a new coordinate to simplify the problem, g =
z —f V„,~(t') dt' Upo. n linearization, we obtain the fol-
lowing equation for the perturbed density pz..

where 7r = 7r/L, m is an integer, and S(t) = A(t). We-
notice that the spectrum is discrete for the x direction
but continuous along the z direction. We now substi-
tute (6) into (5) and utilize the fact t = r + tn with
tn = sin ' 1/I . After some algebra, we obtain the fol-
lowing second order ordinary differential equation for the
amplitude p~(t) = pt. ~ (t):

pz + B(q)pz + iC(q)pz + D(q)pq + iE(q)pq
= iL&(r)pz + Mq(r)pz + iN&(r)pz,

where

(7)

B(q) =R '(& m + q), C(q) = 2qv'I 2 —1,

(8)

D(q) = T, (q + rr m ) —zq21z + q2,

E(q) = —q + VI z —1R 'q(7r m + q ), (9)

and the time dependent inhomogeneous terms are L~(r) =
2q[r + QI 2 —1 cosr —sinr], M~(r) = —2q (I —1) X
cosr + 2qzQI 2 —1 sinr + [q2(I z —2)/2] cos(2r)—
q2$1 —1 sin(2r) —2q2$1 —lr(1 —cosr) —2q r X
sinr + q r, and N~(r) = —qv'I z —1 sinr —q cosr +
R 'q(q + & m ) (r + VI z —1 cosr —sinr).

Note Eq. (7) is valid only between r = 2n7r and r =
7 p + 2n ~ with 7 p —= t ~

—tp, during which time grains
are launched from the plate by vibrations and then
undergo free fall. Except for this region, it is easy to
show S(t) = 0 and C(q) = E(q) = Lz(r) = Mz(r) =
Nz(r) = 0 with D(q) ~ Do(q) = T, (q + rr mz).

The rest of the paper is devoted to discuss the condi-
tion for the linear stability of (7) and to test numerically
the validity of our approximations. We may be able to
obtain an explicit solution of Eq. (7) with the aid of the

where R = R/(1 + g). We now solve (5) in two
dimensions under the no current boundary condition at the
plate and at z = ~, namely, pI = 0 atx = 0, I, and z =
0, ~, where L is the dimensionless size of the box. To
satisfy these boundary conditions, we set

pl, (x, y, z, t) = pt q (t) sin[rrmx] sin[q(s —S(t))],
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assumption that the most unstable mode is the only rele-
vant mode. The condition for instability in this treat-
ment, however, is complicated and time dependent. In
addition, this condition is not adequate for our purpose,
since we are interested in the behavior for times longer
than one vibrating oscillation. Therefore we may re-
place L~(r) [and Mq(r) and N~(r) as well] by its average
value over allying time (L~(r)), namely, Lq(r) = (L~) =

jp" dr Lq(r), and so on for Mz(7) and Nq(7). Equa-
tion (7) then reduces to a second order ordinary dif-
ferential equation with constant coefficients. Assuming

p~ —e ', it becomes easy to obtain the eigenvalues a.
for the fiying motion as

8+iC
2

(10)
where C = C(q) —(Lq), D = D(q) —(M~), and E =
E(q) —(Nq). The relevant branch is o+ and the eigen-

1
values reduce to o.~ = —B/2 ~ zQBz —4Dp for sta-
tionary states.

The averaged instability condition over one oscillation
cycle is then the average of Ref o.] ) 0. For this purpose,
we introduce a function

BC 1 z — Cz
eoff(q) = &p E

l
B D +

2 ) 4

+ (2' —rp) (—B Dp), (11)
where the first term is the instability condition for (10)
multiplied by the time period ~0 in which particles can
move freely [13], while the second term is that with
S(t) = 0. If the function freff(q) ) 0 for any q, it sig-
nals the instability of the uniform bouncing solution. For
the finite system, o.,ff(0) = 27r T, /R L6—( 0. Thus
convection disappears for infinite systems, which agrees
with MD simulations [1,3,14]. Equivalently, convection
also disappears in the limit of large R, i.e., either the
particles are too smooth or the kinetic energy is too small
to provide the necessary driving force among grains.
The set of parameters that corresponds to physical situ-
ations might be R —2, T, —3, and L = 10, because
(i) the linear size of the box L„=Lg/to = 0.6 cm
for co/2m = 20 Hz, (ii) T —rp fp' V„i(r)dr —3,
(iii) the kinetic viscosity for granular fluid is evalu-
ated by v, = S X 10 3 m /s [2] and the definition
of R = UL„/v, —2 with the aid of the characteris-

tic velocity U — V„~ g /co —10 cm/sec in physical
units. For pure numerical reasons, however, we chose
R = T, = 10 and L = 10. For these parameters, we first
solved A(t) = 0 numerically to determine ti, and then
computed 0 ff (q) as a function of q. As demonstrated
in Fig. 1, o.,ff(q) is convex and thus has a maximum
o at a particular value of q. For I = 1, o ( 0 and
thus o,ff(q) ( 0 for all q and the bouncing solution is
stable. As we increase I' further to the critical value,
I, , o. moves upward, crosses zero and becomes pos-
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itive, in which case o.,ff(q) ) 0 for a band of q. In
this case, the bouncing solution becomes unstable and
we expect convective rolls to appear. The onset of
convection is then determined by setting, o. (I,) = 0.
For L = 10, R = T, = 10, we find I, = 1.12, and the
selected wave number is about q, = 0.22. The most
unstable wave number q gradually shifts with the
increase of I . We now check the validity of our picture
by numerical simulations.

Numerical results. We have—solved (2)—(4) numeri-
cally in two dimensions with no slip boundary conditions
at the side walls as well as at the top and bottom plates.
Note that the top plate suppresses the complicated surface
motion of vibrating beds and allows us to use our simpli-
fied picture. Since the granular Quid is confined in a box,
we do not introduce A explicitly in the simulations. As a
result, S(t) = 0 after a grain lands on a plate in the av-
erage bouncing state. The absence of A and the presence
of the top wall is expected to cause the bouncing solution
to appear even for I ~ 1 in contrast to the real situation.
Since, however, the linearized equation (7) with S(t) = 0
is identical to that with nonzero A, omitting A would not
change the essence of the dynamics. In the same spirit,
we have ignored ~ and b in Eqs. (3) and (4) in our simu-
lations. Our simulation results are presented in Fig. 2 for
two different values of I, V ( I, and l ) I,-. In the
former case, the bouncing solution is expected to appear
inside the bed and the density and the velocity at a given
point oscillates with the same frequency as the vibration
[Fig. 2(a)]. Upon increasing I' further to I = 1.2, which
is beyond the predicted I,. = 1.12 determined by (11),we
find that the bouncing solution has disappeared and per-

-0.03 I I I l I I I I I

0 0.05 O. I 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
q

FIG. l. The effective growth rate o,ff(q) as a function of the
wave number q for I = 1.05 (diamonds), for which o,ff(q) (
0 for all values of q. For I = 1.2 ) F, = 1.12, o.,ff(q)
becomes positive for a band of q (squares). I, is determined
by the condition that the maximum of o,ff (q) becomes
zero at I,. (crosses). The parameters used are T, = R = 10
and L = 10.
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p gz precisely cancels the gravity term in the quid
equation, thus supressing motion inside the bulk, while
the absence of the hydrodynamic pressure term produces
the convective instability in the bulk for the granular beds.
We will present the details of our analysis including the
weakly nonlinear analysis elsewhere, which will highlight
the differences between the two.
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FIG. 2. (a) A bouncing solution. The speed v, at a given
point is plotted as a function of time for I = 0.9. (b) For
I = 1.2 ) I, = 1.12, the bouncing solution becomes unstable
and permanent convective rolls appear inside the box. The
arrows are the velocity vectors and the direction of the arrow is
the direction of the flow. The parameters used in simulations
for (a) and (b) are the same as those in Fig. 1.

manent convective rolls have developed inside the bulk
[Fig. 2(b)]. The wavelength of the most unstable mode
given by the linear stability analysis is about q = 0.4,
which is not far from the actual wavelength of the con-
vective rolls: q = 2'/A = 27r/L = 0.6.

In passing, we briefly mention the difference between
the granular beds and water beds. The latter is shown
to exhibit the Faraday instability at the air-water interface
[15]. The crucial difference between these two systems
lies in the pressure term: For the water bed, since
water is incompressible, the hydrodynamic pressure term
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