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Novel Arbitrary-Amplitude Soliton Solutions of the Cubic-Quintic Complex
Ginzburg-Landau Equation
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We propose a method for finding stationary pulse solutions of the complex Ginzburg-Landau
equation, which can be applied to both cubic and quintic models. In particular, we discover previously
unknown arbitrary-amplitude pulse solutions for both the cubic and quintic models. Numerical
simulations show that these solutions are stable relative to small perturbations.
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The complex Ginzburg-Landau equation (CGLE) is
known in many branches of physics, including quid dy-
namics [1], nonlinear optics [2,3] and laser physics [4,5],
theory of phase transitions [6], etc. This equation is rather
general, as it includes dispersive and nonlinear effects, in
both conservative and dissipative forms. The CGLE pos-
sesses a rich variety of solutions, including coherent struc-
tures such as pulses, fronts, sinks, and sources [7—15],
periodic and quasiperiodic solutions [16], and a transition
to chaos [17]. In this paper, we concentrate on the pulse
solutions, as they are the most important for many appli-
cations. We call this solution a soliton or "solitary wave. "

The exact pulse solution for the cubic CGLE is known
from Refs. [7—9]. Physically, such a solution exists
as a result of two balances: the balance between the
dispersion and the nonlinearity, and the balance between
the arnplification and the damping. As these effects
depend on the pulse amplitude and width, a total balance
is possible only at some fixed values of these two
parameters. This is the key difference between pulses
in nonconservative systems, and the soliton solutions
of integrable, or, more generally, Hamiltonian systems,
which usually have the amplitude as a free parameter.
Unexpectedly, arbitrary-amplitude (AA) solitons exist
even in nonconservative systems, and this is the subject
we are discussing in this paper.

The known pulse solutions of the cubic CGLE are un-
stable in general. There can be two cases which depend
on the range of parameters: (i) the pulse itself is unstable,
or (ii) the pulse is stable but the background state sur-
rounding it is unstable. This shows the importance of the
quintic model, where, in some range of the coefficients,
the pulse and the background state can be stable simul-
taneously. Numerical simulations of stable pulse propa-
gation have been demonstrated in [10—12]. Regions of
existence for pulselike solutions with zero velocity in
the parameter space have been analyzed in [10,12,18,19].
Some analytical solutions for the pulses in the quintic
model have been reported recently by several authors
[12,13]. Strictly speaking, there are two stationary solu-
tions for some sets of parameters. One of them (with the
smaller amplitude) is unstable. Stability of the other one

(with the larger amplitude) needs to be investigated (see
[20]). However, for all solutions, the amplitude is fixed
for fixed values of parameters.

In this Letter we report the analytic method which
allows us to find, with the same procedure, the solitons
with fixed amplitude (FA) and novel AA solitons, in both
the quintic and cubic models. These AA solutions are
stable for each model.

We write the CGLE in the following form (see, e.g. ,

[2]):

iQ, + 2 p„+lpl p = i6$ + ipse„+ielpl p

6
d —P+Pd2 =0, (3)

+ it l+l'+ —~l+l'+
where, for laser systems [21], z is the propagation
distance, t is retarded time, P(t, z) is the slowly varying
envelope of the electrical field, 6 is the linear gain
at the carrier frequency, P describes spectral filtering,
e accounts for nonlinear amplification, p, represents
a higher order correction (saturation) to the nonlinear
amplification, and v is a higher order correction term to
the nonlinear refractive index.

Here we are interested in stationary solutions of Eq. (1)
with zero transverse velocity, and look for a solution in
the form

P(t, z) = a(t) exp(id In[a(t)] —icuz), (2)
where a(t) is a real function and d and cu are real
constants. This is, obviously, a restriction because the
chirp could have a more general functional dependence
on t. However, this constraint allows us to find some
families of solutions in analytic form. Ansatz (2) is a
natural generalization of the solutions given in Refs. [7—
9]. Also, the phase chirp given by (2) corresponds
qualitatively to those found in numerical simulations.

It can be shown (a detailed derivation will be published
elsewhere) that the ansatz (2) leads directly to the follow-
ing equation 1'or a(t):

~/2 2VQ 2(2P —e)a+ +
az 8Pd —d +3 3d(1+4P )
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where the prime stands for differentiation with respect to 2.2-
2.0-

0.30

3(1 + 2eP) ~ $9(1 + 2eP) + 8(e —2P)
2(e —2P)

and the coefficients are connected by the relation

12eP + 4e —2P
P d —2P

e —2P

(4)

2e P —16P —3+ p, d+1 =0. (5)
e —2P

In what follows, we consider the cubic and quintic CGLEs
separately.

First we concentrate on the cubic CGLE, i.e., we put
v = p, = 0. Then Eq. (3) has a FA solution

a(t) = CB sech(Bt), (6)
where

8 = 3d(1 + 4P~)
Pd2 + d —P 2(2P —e)

C = (7)

and d is given by Eq. (4) after choosing the minus sign
in front of the root. The second value of d leads to an
unphysical solution. The solution (6) is known as the
solution of Pereira and Stenllo [8] (see also [7,9]). On
the (p, e) plane, the denominator in the expression for B
is positive below the curve given by

P 3/1 + 4P2 —1

2 2 + 9P2
and negative above it. Note that (8) reduces to e =
p/2 for p « 1, e = 1/3 for p &) 1. It can be shown
that for 6 ~ 0, the solution (6) exists, and it is stable be-
low this curve (although the background state is unstable).
For 6 & 0 the solution exists above the curve (8), but it is
unstable (see Fig. 1).

It is easy to see that the solution (6) does not exist
on the line (8). As we are moving towards this line on
the (p, e) plane, the soliton amplitude CB increases to
infinity, and its width 1/B vanishes. At the same time,
the amplitude-width product C remains finite. However,
if we also impose the condition 6 = 0, a new solution,
valid only on the line (8), can be found:

a(t) = FG sech(Gt), F = d 1 + 4p~/2e, (9)
where G is an arbitrary positive parameter. Taking into
account Eq. (8) for e (p), we obtain the expression for d
which is valid on the line (8):

d= 1+4 ~ —1 2 . 10

Figure 1 shows the amplitude-width product F vs p
calculated along the special line (8). One can see that,
for small p, the amplitude-width product is close to unity,
while it follows from (8) that the chirp is small, so that
the solution (9) converges to the nonlinear Schrodinger
equation soliton. As p increases, the product F increases.
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FIG. 1. Special line on the (P, e) plane given by Eq. (8).
This line delineates the range of existence of solition solutions
with fixed amplitude. Below the line, solutions exist for
6 ~ 0 and above the line for 6 ~ 0. The arbitrary-amplitude
solutions exist only on this line. The amp1itude-width products
C(p) = F(p) (dashed line). These products are calculated on
the special line (8).

The FA solitons do not exist on the special line (8). The
limiting value of the amplitude-width product C(p) for
FA solitons coincide with the value F(p) on the special
line (see Fig. 1). This shows that AA solitons can be
considered as limiting case of FA solitons when 6 ~ 0.
However, at each point of the special curve these solutions
are a one parameter family of solutions rather than a
single solution. Moreover, these new solutions have
stability properties different from those for FA solitons.

The reason for the existence of the arbitrary-amplitude
solitons in the cubic model is the following. When
6 = 0, the cubic CGLE becomes invariant under the scale
transformation P ~ GP, t ~ Gt, g ~ G g. Hence, if
we know a particular solution, the whole family can
be generated using this transformation. However, some
particular solution must be known. Note also that such
a scale transformation is not obvious in the case of the
quintic equation, which is discussed later. This problem
can be studied in more detail using Lie group symmetry
reductions (see, e.g. , Ref. [22]).

An important problem is the stability of this solution
relative to small perturbations of the initial conditions. In
general, a solution is stable if, after a small perturbation,
it approaches some stationary state, and is unstable if the
perturbation grows exponentially. We have studied the
stability of the new solutions numerically, by adding small
perturbations to the exact solutions and solving the full
nonlinear equation (1). The arbitrary-amplitude solutions
are stable relative to both even and odd perturbations at
any value of the amplitude of the pulse. Examples of
stable propagation of these solitons, perturbed initially,
are shown in Fig. 2. When the perturbation is symmetric,
the change in the parameter F is linearly proportional to
the perturbation amplitude (cf. [23]). In particular, this
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means that, for small P, a stationary pulse can be formed
from the chirp-free initial condition po(t) = rI sech(alt),
and, in the stationary state, F = g. If the perturbation
is antisymmetric, F changes only in the second order.
We checked numerically that the final stationary states in
Fig. 2 belong to the family (9).

Now let us turn to the quintic case. The soliton
solutions of the quintic COLE exist for a wide range
of values of the coefficients P, e, p„and v. However,
the ansatz (2) is the condition that restricts this range
by imposing the relation (5) on them. By using the
substitution f = a, we can rewrite Eq. (3) in the form

f' 8vf 8(2P —e)f
f2 8Pd —d2 + 3 3d(l + 4P2)

46
d —P+Pd2

—= 0. (11)

Its general solution is [24]

f(t) = 2f~f2

(fi + f2) (fl f2) cosh(2av'filf21 t)
(12)

where n = $2~v/(8pd —d2 + 3)~; f~ and f2 are the
roots of the equation

2vf2 2(2P —e)f
8Pd —d2 + 3 3d(1 + 4P2)

6
d —P+Pd2

(13)

FIG. 2. (a) Stable propagation of AA solutions (9) of the cu-
bic CGLE. Initial condition Po(t) =—(1 + A, ) P, , (t) for the left
soliton, and Pp(t) = P,, (t) + A, (Ba/Bt) for the right soliton,
where stationary solution P„(t)is given by Eq. (9), G = 1, and
amplitudes of perturbations A, = 0.1, A, = 0.1. Parameters
6 = 0, P = 0.3, e from Eq. (8). (b) Symmetric (solid line)
and antisymmetric (dashed line) perturbations of the initial con-
ditions. Perturbations amplitudes are magnified. (c) Dynam-
ics of the soliton amplitude for A, = —0.1, —0.05, 0, 0.05, 0.1

(from top to bottom); parameters are the same as in (a).
(14)

18d2v I + 4
5 = (2P —e)2 + P. (15)

(8Pd —d2 + 3)
It can be shown that, as p, , v ~ 0, the solution (14)
transforms to the solution (9).

Let us analyze the conditions for this solution to
exist. Taking into account that d ~ 0, 2P —e ) 0, and
8Pd —d2 + 3 ) 0, then for any P ) 0 we can see from
(14) and (15) that, for positive v, the solution exists for
any P, while for negative v there is a threshold value

(2P —e)2(8Pd —d2 + 3)
182v(I + 4P2)

16

and the solution exists only for P ( Pth. Note that,
as 6 = 0, P and e are related by (8), p, and v are
connected by (5), so the solution (14) actually depends
on two independent parameters, say, P and v. Numerical
analysis shows that the solution (14) is stable at any
value of the parameter P, with respect to both even and
odd amplitude perturbations (Fig. 3). The response to the
perturbations is the same as for the cubic model [see
Figs. 3(b) and 3(c)]. We have also studied numerically
the stability of FA solitons in the quintic model. They
occur to be unstable at every point of the parameter space,
where exact solutions exist except of the limiting case
when solitons are almost transformed into two fronts (see
[20] for details).

We now discuss the conditions under which the above
soliton solution (12) exists. Clearly, one of the roots (we
choose f!)must be positive for the solution to exist. The
second one can have either sign. If it is also positive, we
choose f &

~ f2 Th. e solution given by Eq. (12) exists in

two cases:
(1) 2v/(8Pd —d + 3) ~ 0. The root f! is positive

and the root f2 is negative. There are no restrictions on
the sign of (2P —e)/d. Hence both values of d are
suitable.

(2) 2v/(8Pd —d + 3) ~ 0. Both roots are positive.
Hence (2P —e)/d must be positive. Only a negative d
satisfies this criterion.

In both cases the solution is defined by Eq. (12).
However, for a given set of parameters 6, P, e, and

~
v ~,

there are two solutions when v is negative, but only one
when v is positive. The above conditions also imply that
6/(d —P + Pd ) must be always positive. This means
that the restrictions on the sign of 6 are the same as in the
cubic case. However, for negative p, , the solution can be
stable above the line (8).

The solution (12) has a singularity on the same line (8)
in the plane (P, e) as in the cubic case. This singularity
exists when the roots f~ and f2 have opposite signs. If
P and e satisfy (8) and we have 6 = 0, the solution with
arbitrary amplitude exists:

f t
3d(1 + 4P )P

(2P —e) + 5 cosh(2~P t)
where P (P ) 0) is the parameter for the family
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FIG. 3. (a) Stable propagation of AA solutions (2) and (15)
of the quintic CGLE. Initial conditions are chosen the same
way as in Fig. 2. Parameters A, = —0.3, A, = —0.5, P =
0.3, v = —0.3, p, and e from Eqs. (5) and (8), respectively,
P = 1. (b),(c) Soliton amplitude at z = 100 for P = 0.1 (cir-
cles), P = 0.2 (triangles), and P = 0.3 (diamonds), versus the
amplitude of (b) symmetric and (c) antisymmetric perturbation.

The very fact that arbitrary-amplitude pulses exist is
important for many applications —for instance, fiber ring
lasers and optical transmission lines [2,3]. The results
show that at some values of the parameters the system
can be switched from the regime with hard excitation
(fixed amplitude pulses) to the regime with soft excitation
(arbitrary-amplitude pulses). This knowledge is important
both for avoiding undesirable effects in these devices and
for designing new types of all-optical switches. Note that,
in the cubic model, AA solutions are the only example of
stable pulses.

In conclusion, we have proposed an analytic method
for seeking stationary pulse solutions of the cubic and
quintic CGLE. In particular, we have discovered families
of stable arbitrary-amplitude solitons for both the cubic
and quintic models.
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