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Electromagnetic “Bubbles’ and Shock Waves: Unipolar, Nonoscillating EM Solitons
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We show that atomic gases can support solitary pulses of a unipolar electromagnetic field (“EM
bubbles”) with amplitude up to the atomic field (~10° V/cm) and duration down to ~1071¢ 5. EM
bubbles propagate without dispersion, are stable, and are insensitive to the change of gas density.
Atomic gasses can also support an EM shock wave forming a precursor of a dc ionizing field.

PACS numbers: 42.50.Md, 32.80.Fb, 42.65.Re

Quantum electronics and nonlinear optics operate usu-
ally with almost-harmonic EM oscillations modulated by
an envelope much longer than a single cycle of the os-
cillation, with their spectral width substantially smaller
than the carrier frequency. Typical examples are 27
solitons in two-level systems (TLS) [1(a)], mode-locked
laser pulses [1(b)] due to multimode cavity interaction
with laser medium, and optical-fiber solitons [1(c)] due to
Kerr nonlinearity. In all of them, slow varying envelope
approximations are used in both the propagation (by re-
ducing Maxwell equations to a parabolic partial differential
equation) and the material response [rotating-wave approx-
imation (RWA) in constitutive equations]. Many applica-
tions, however, in particular the study of atomic physics by
means of photoionization, call for short and intense EM
pulses of nonoscillating nature, having wide spectra that
spread from zero frequency. Atomic ionization with al-
most unipolar “half-cycle pulses” has been of substantial
recent interest (see, e.g., [2]). Currently available pulses
generated in semiconductor structures are ~400 fs long
with the peak field of ~200 kV/cm.

Shorter (107'*~107!¢ s) and more intense (up to 10° V/
cm) unipolar pulses might be of great interest for the host
of applications. They can be used for a “global” spec-
troscopic technique based on a shocklike excitation over
the entire atomic spectrum, including the normally pro-
hibited transitions. The ionization by a pulse shorter than
the orbital period may bridge a gap between photoioniza-
tion and collisional ionization [2(b)]. Time-domain spec-
troscopy of dielectrics, semiconductors, and flames [3(a)]
with these pulses may expand this method from presently
available THz domain [3(b)] to infrared-optical domain.
These pulses may be used in time-resolved spectroscopy of
transient chemical processes on a fs and sub-fs time scale,
e.g., dissociation and autoionization [3(c)], and for quan-
tum control of chemical transformations [3(d)]. One can
envision their applications to probing high-density plasmas
in tokamaks, pulse-dispersion diagnostic of gases, very
high frequency up-conversion due to a large Doppler shift
of counterpropagating light backscattered by such a pulse,
etc. These pulses may also be used for imaging [3(e)],
medical infrared tomography, etc.

Supershort pulses can be generated only by strongly
nonlinear processes [4]. Especially significant are solitary
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waves propagating with unchanged shape and length. An
exact solitonlike solution for a unipolar pulse in a strongly
driven TLS, described by full Maxwell + full Bloch
equations, was found quite a while ago [5].

Here we show that such solitons are feasible and natural
phenomena for many systems, both quantum and classical.
Their length may range from a small fraction of the cycle
length of the resonance supporting them to much longer
than that cycle, depending on their intensity. We will
call them EM bubbles (EMB) to stress their nonenvelope
nature. We demonstrate that photoionization imposes an
upper limit on the EMB amplitude (typically ~10° V/cm)
and a lower limit on its length (~107'¢ 5). The shortest
EMB is reached at a certain amplitude; at some larger
amplitude, an EMB degenerates into a shock wave.

For a plane EM wave propagating along the z axis, the
Maxwell equation for the electric field E is

c*9’E /07> — 9°E/0t> = 47w d*P /o>, (1)

where P is polarization. Assuming that an EMB propa-
gates with a constant velocity, B¢, introducing retarded
variables 7 =1 — z/Bc and 7 = z, imposing a steady
state condition dE/dZ = 9P /dz = 0, and stipulating that
the EMB has finite energy, i.e., E, P — 0 as |Z| — = (a
so-called bright soliton condition), we derive a universal
“EMB replication” between E and P,

E({) =47P(HM, M= B*/(1 - BH, (@

with /M being a relativistic EMB “momentum.” It holds
for any constitutive relationship between P and E.

Consider first an EMB in a medium of quantum TLSs
characterized by the dipole moment d and resonant fre-
quency wg. Using the standard theory of TLS with-
out relaxation and introducing normalized field f = 2d -
E/hwy = 2Qr/wo (where Qp = 2d - E/# is a Rabi
frequency), polarization per atom p (thus, P = Ndp,
where N is the density of particles), population difference
per atom 1 (we use the notations of Ref. [6], which con-
sidered high harmonics generation in a superdressed TLS),
and time 7 = (¢t — z/Bc¢) wy, we obtain Bloch equations
(without RWA) as

n=-fp. p+p=[fn, 3)
where the overdot designates 9/d7. [The invariant of
Eq. (3) is a square of the Rabi sphere radius, n? + p? +
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p? = inv = 1.] The EMB replication (2) is written now

as f = pOM, where Q = 4aN Ao(d/e)?, e is the electron
charge, Ay = 27c/wg, and & = €?/hc = 1/137. Solv-
ing (3) together with the EMB replication for atoms being
initially in equilibrium, n — 1 at |7]| — o, we obtain a
solitary, nonoscillating wave, consistent with [5]

f(r) = 2fgsech[(r — C) fol, n=1-fp/2, 4
where C is an integration constant, and f, = (OM — 1)!/2
[= (Qg)pk/wo] is the half amplitude of the soliton directly
related to its length (= £y ') and velocity B; see Eq. (2).
The minimal velocity, at fo = 0, is Bmin = (1 + Q) '/2.
Shorter EMBs have a higher peak amplitude and move
faster. The peak amplitude of an EMB with the length
T at a half-peak field [i.e., T = 2.63/(Qg)pk] is Epx =
1.32/Td.

EMB (4) holds also for any amplifying TLS with the
inversed population difference, n(|7| — «) = —1. In
this case, n = —1 — fp/2, fo = (—=OM — D)2, M <
0, and ,82 > 1 [7]. Larger EMBs here move slower,
approaching the speed of light as their amplitude increases.

The  Fourier spectrum of EMB, S;(w) «
sech[7w /2(Qr)pk], spreads from zero to the cutoff
frequency, ~ (Qg)pk. Phase-portrait considerations
show that with f =p =1—- 5 =0 at |7| — o, the
nonoscillating EMB (4) is the only soliton supported
by the system. Therefore, RWA-based envelope 27
solitons are inconsistent with the exact soliton (4) (which
indicates that higher-order RWA may render 27 solitons
unstable at long distances). EMB (4) may be regarded as
a “full Bloch” 27 soliton; by introducing phase (or area)
dr(7) = [T, fdr, we get ¢pr(®) = 2ar. (This points
to a possible “full Bloch” area theorem.)

The solution (4) is valid within the limitations of our
TLS model; in particular, the EMB must be shorter than
all the atomic relaxation times, which still allows EMBs as
long as ~ 1077 s. Itis instructive to consider an example
of Xe, with Aiwg ~ 8.44eV, d/e ~ 7 A (based on the
superdressed TLS model for the high harmonics generation
in Xe [6]). In this case, for T = 12 ps, Epx ~ 1 kV/em
(X fiwp/d). Longer pulses can still be considered within
the TLS model with relaxation included. Of more interest,
however, are the shortest and most intense pulses. As the
EMB field approaches the atomic field (~108-10° V/cm),
the ionization potential dominates the EMB formation,
limiting EMB length and amplitude. For such fields,
the TLS model is invalid. We can, however, evaluate
limitations on EMB within a classical 1D model of an
atom, with a strongly nonlinear potential, U(x), limited
at |x| — oo, to allow for ionization; here x is the electron
displacement. Bloch equations (3) are replaced then by a
classical, normalized equation for the electron motion,

p + du(p)/dp = f(7). (5)
Here p = x/xo, xo is an atomic characteristic size; u(p) =
U(x)/Uy, Uy is a characteristic energy (e.g., the ioni-
zation potential); 7 = fwo; wi = Uy/me.x5, m, is the
mass of electron; and f(7) = eE(7)xo/Uy. The total

polarization here is P = Nxe, and the EMB replication
is still f(1) = p(7)MQ, with QO = 47N (ex)?/Uy. Note
that for EMB, TLS Bloch equations (3) reduce to a simple
Duffing equation for, e.g., p,p — Ap + Bp> = 0 [with
A= QM — 1 and B = (QM)?/2], which is isomorphic
to Eq. (5) (with f = pMQ) for the simplest classical
nonlinear potential, u(p) = p%/2 + ap*, a = const >
0. Thus, this classical potential can give rise to the same
EMB solution, Eq. (4). For an arbitrary potential u(p),
the family of EMB solutions, p(7), is found from Eq. (5)
through the quadrature:

f{MQp2 —2ulp) — wO Pdp = xr. ()

A “bright” solitary solution to (6) exists, however, only
under a certain condition on nonlinearity. If, e.g., u(p) =
p2/2 + ap*, the nonlinearity must be “positive,” a > 0
[8]. In general, if u is a smooth, monotonically in-
creasing function of p2, the “bright” soliton exists only
when u(p) — u(0) > p?du(0)/d(p?) near p = 0. This
requires the atomic potential to have sufficiently ‘“hard
walls,” which holds for some model potentials [9(a)]
[but not for such a “soft” potential as, e.g., u = —(1 +
pz)_l/2 [9(b)]]. An example of potential with control-
lable “hardness” that allows for an analytic solution of (6)
is u(p) = p2(1/2 + ap?)/(1 + p?)?, where a = const
[10]. To illustrate the limitations imposed by over-the-
barrier ionization, consider first a “box” potential, u(p) =
0 for |p| < 1, and u(p) = 1 otherwise, in which case the
solution of (6) is

p(r) = exp(=I7l\/fo),  f(1) = fop(7)
(fo=2), @)

and M = fy/Q. (We presume here that an electron
always starts its motion at p = 0.) Thus, the maximal
field strength E,x and shortest EMB length 7, are

Emax = 2U()/€X(), Tmin = ()C()/ZC) mecz/UO > (8)

where 2x( is a total box width. FE,, is of the same
nature as an atomic field, Ey = Epni/2, i.e., the atom is
ionized (in classical terms) by a pulse (7), if its amplitude
exceeds Enax; Tmin 1S the time for such a field to pull an
electron out of the potential well. With Uy = 20 eV and
xo = 1A, one has Epy = 4 X 10° V/cm, and Toin ~
0.026 fs. To make a connection to atoms with Coulomb
long-range attraction, consider now a potential

u=1—(1+2bp? + pH /4 )

with u — 1 = p~! at |p| — . It has a single well and

satisfies the hard-wall condition only when 0 = b =
ber = +/2/5. For a given Uy and atomic number Z we
have xg = reZ(m.c?/Up), Ao = 2mrc/wy = 27r.Z X
(mec?/Up)*?,  and  Ea = (2/5)/4Uy/exo:  here
re = e*/m.c? is the classical electron radius. As
an illustration, consider a limiting case, » = 0. Small-
amplitude EMBs are governed again by a Duffing
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equation, p — MQp + p> = 0, with a solitary so-
lution p = pov/2sech(rpg) (Fig. 1, curve 1). Here
po = /MQ, and, therefore, B, =0, ie., small
EMBs here can move very slowly, the feature of
any potential with du(0)/d(p?) = 0. The EMB peak
amplitude is fpx = V2(MQ)¥?. Thus, as its ampli-
tude increases, an EMB moves faster and shortens.
However, at pyi = (8/45)V/*% = 0.65, fo =~ 0.122,
EMB length reaches minimum, 74 mi, = 5.3 (at the
half-peak amplitude, Fig. 1, curve 2) or 7, = 2
(at the half-peak intensity). Assuming Uy = 24 eV
and Z =2, as in He, the shortest EMB length is
Tt min = 2(reZ/c) (m,c?/Uy)3% ~ 1071 5. If the EMB
amplitude is further increased, EMB broadens and flattens
(Fig. 1, curve 3). Finally, at a threshold amplitude,
ppk = 1.245, fox = 0.42, it becomes a shock (antishock)
wave whose leading (trailing) edge is an autoionization
(deionization) front (Fig. 1, curve 4). Its field rises (falls)
as exp(7/Tion), With Tion = (MQ)™1/2 = 1.7.

This shock wave is typical to any hard-wall ionization
potential. Our preliminary results [10] indicate though that
it may become unstable, producing a short precursor that
travels as a pilot EMB at a faster speed ahead of the group
of other longer and closely spaced EMBs merging into
a dc field far behind it. In a more detailed picture of a
shock wave, the classical over-the-barrier ionization near
the threshold must be modified by quantum tunneling.

To demonstrate the EMB existence in both quantum
and classical cases most rigorously, we used so far a
“double-full” approach: full Maxwell equation (1) + full
constitutive equations (3) or (5) (i.e., no RWA). Closer
consideration shows, however, that (similarly to TLS in
[5(b)]) of these two only constitutive equations are crucial,
at least at low density, O < 1, e.g., in gases, where
typically Q ~ 107#—10"'. In this case, the propagation
velocity approaches the speed of light, 1 — 8 = 0(Q).
Writing the field as E = E(7,Z), where, e.g., for the
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FIG. 1. Normalized field f vs time 7 for steady state EMB
(curves 1-3) and a shock wave (curve 4) due to ionization
potential. Curves: 1—MQ = 0.12, 2—MQ = 0.187, 3—
MQ = (MQ)ion — 1075; and 4—MQ = (MQ);on = 0.3403.
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wave propagating in the positive direction in z, 7 = ¢ —
z/c, Z = z, and assuming that the field changes much
slower in Z than in 7, one can neglect the term 9%E /93
in the full Maxwell equation (1), reducing it to a first
order wave equation ¢ dE/9Z + 27 dP/d7f = 0. (The
physical implication here is that nonlinear retroreflection is
neglected.) The applicability of reduced Maxwell equation
can be verified by, e.g., using it instead of Eq. (1) to
obtain EMBs in either quantum or classical limits. In
the transient propagation, it has also been verified by
us in numerical simulations. To improve precision, we
chose 7 = t — z/Bminc; so that for, e.g., TLS, the reduced
Maxwell equation is written as

—2¢ 9E/9% Buin + Q 0E/3T = 4 aP/37.  (10)

We found also that Eq. (10) can still be used even when
Q is not small, if the field spectrum does not exceed wy.

One of the major issues is whether EMBs are feasible
with currently available sources, e.g., half-cycle pulses or
very intense short laser pulses, via a transient propagation
process. In our computer simulations based on Egs. (3)
and (10), we choose Xe (see above) as TLS, and mod-
eled a half-cycle pulse [2(a)] by a nonoscillating 400 fs
long (at the half-peak amplitude) Gaussian pulse, with the
amplitude Ey = 200 kV/cm, Fig. 2(a), and 800 kV/cm
(which is conceivably within the reach of current tech-
niques, e.g., by using focusing); see Fig. 2(b). Figure 2
depicts the formation of a few distinct short EMBs out
of a much longer pulse. [The amplitude of a single
400 fs long EMB (4) in Xe is only ~30 kV/cm.] As ex-
pected, a larger incident amplitude increases the number
of EMBs. For N = 10%' cm™3 (37 atm of Xe), the dis-
tance for the first EMB to appear at Ey = 200 kV/cm
is ~250 cm; however, it shortens dramatically (down
to ~40 cm) at Eg = 800 kV/cm. The shortest EMB
in Fig. 2(a) is ~73 fs long at half-peak amplitude, and
~15 fs in Fig. 2(b) (with the fully developed EMBs be-
ing ~20%-30% shorter), and their amplitude is ~1.5
of the incident pulse. The TLS here is still not super-
dressed [6]: for E,x in Fig. 2(b), fo ~2 X 1072 < 1,
i.e., (Qr)pk < wo; thus the atom is far from the ionization.

We have also discovered that EMBs are remarkably sta-
ble against temporal or spatial changes of medium param-
eters. In particular, when the gas density N was varied
by an order of magnitude along the path of propagation,
the EMB profile and its length remained stable; only its
velocity B was adjusting to a varying density N so that
M(B)Q(N) = inv. An EMB generated, e.g., in a gas jet,
can slide into vacuum without distortion.

At this point, no mathematical proof exists that EMBs
of “double-full” (Maxwell + constitutive) equations are
real solitons in the sense of full integrability of these
equations, and that, therefore, they are absolutely stable.
Our numerical simulations for both TLS and nonlinear
classical potentials show that small EMBs due to reduced
Maxwell equation (10) are stable against both small and
large (e.g., collision with another EMB) perturbations,
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