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Faraday Rotation and Complex-Valued Traversal Time for Classical Light Waves
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We introduce a magnetic clock approach to measure the traversal and reflection times of an
electromagnetic wave through a slab, when multiple reflections are taken into account. The traversal
time is a complex quantity whose real component is proportional to the Faraday rotation and whose
imaginary component is proportional to the degree of ellipticity. We conclude that the complex traversal
time found for an electron by several different methods is not a consequence of the quantum nature of
the particle, but due to the wavelike character of the entity involved.

PACS numbers: 41.20.Jb, 42.25.—p

The question of the time spent by a particle in a given
region of space has often been discussed in the literature
[1—5]. There are two types of difficulties. First, the
particle may have to tunnel through a barrier, in which
case it has an imaginary wave vector and we do not
know what is the analog of the classical velocity. Second,
the final transmission amplitude is the superposition of
different paths, along different trajectories or due to
multiple rejections, corresponding to different traversal
times. The problem has been approached from many
different points of view, as shown in the recent review
on the subject by Landauer and Martin [1].

The most direct method to calculate the traversal time
of a particle in a barrier would be to follow the behavior
of a wave packet and determine the delay due to the
barrier, but this type of approach is beset with difficulties.
For example, an emerging peak is not necessarily related
to the incident peak in a causative way [6]. Physically
more significant is the time during which a transmitted
particle interacts with the barrier, as measured by some
physical clock which can detect the particle's presence
within the barrier. One of the principal approaches to
this problem is to utilize the Larmor precession frequency
of the spin, produced by a weak magnetic field acting
within the barrier region, as first proposed by Baz'

[7]. The amount of precession clocks the characteristic
tunneling time ~T, the so-called Biittiker-Landauer time
[8,9]. Sokolovski and Baskin [10] obtained a complex
traversal time, with the Feynman path-integral technique.
They define a functional that measures the time spent by a
Feynman path in a region and then sum this quantity over
all possible paths with the weighting e' ", where 5 is the
action. Which of the two components of this complex
time is the most relevant depends on the experiment,
but it is often the modulus of the complex time that
is the magnitude directly related to the experimental
measurements.

The question of the traversal time of light through a
given region is equally important, but it has been seldom
referred to in the literature. The advances in femtosec-
ond technology and optoelectronics, in general, increase

the inherent importance of the problem. Measurements
of single photon tunneling times, using a two-photon
interferometer, had to be interpreted with the existing
electron theories due to the lack of a proper theory for
electromagnetic waves [11]. Martin and Landauer [12]
studied the problem of the traversal time of classical
evanescent electromagnetic waves by following the be-
havior of a wave packet. Enders and Nimtz [13] found
superluminal velocities in experiments on microwave
transmission through undersized waveguides, correspond-
ing to evanescent modes.

In this Letter we study the problem of the average time
spent by a classical electromagnetic wave in a slab and
in a layered system when we take into account the effects
of multiple reflections. Analogously to the electron case,
we introduce a magnetic clock that can measure the time
spent by the wave packet inside the slab. We find that
the time is again a complex magnitude. We conclude
that this complex nature of time is due to the wavelike
character of the entity involved and not a consequence of
the quantum nature of the electron (or, more specifically,
of the nonexistence of a Hermitian operator for time).
Leavens [14] arrived at a similar conclusion from a very
different point of view.

Let us first consider a slab confined to the segment
0 ~ x ~ L and characterized by a dielectric constant e.
The two semi-infinite media outside the slab are the same
and are characterized by the dielectric constant e&. A
linearly polarized electromagnetic plane wave enters the
slab from the left at normal incidence. (We consider a
plane wave for simplicity, but we will see that our results
apply to any wave packet and so to any nonstationary
process as should be expected in any time determination. )
We take the direction of propagation as the x axis, and
that of the electric field E in the incident wave as the z
axis. A weak magnetic field B is applied in the x direction
and confined to the slab.

The generalized principle of symmetry of the kinetic
coefficients implies that e,J(B) = eJ;(—B). The condi-
tion that absorption is absent requires that the tensor
should be Hermitian e;~ = eI,;. Then the dielectric tensor

2312 0031-9007/95(75(12)(2312(4)$06.00 1995 The American Physical Society



VOLUME 75, NUMBER 12 PH YS ICAL REVIEW LETTERS 18 SEPTEMBER 1995

i t+
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Let us express the complex amplitude of transmission as

1/2
t~ = T~ exp(if~). One can easily check that the real

(4)

of the slab is given by [15]
e igB&

B (1)
where g is the Faraday constant of the slab.

The linearly polarized incident wave can be represented
as the sum of two circularly polarized waves with opposite
directions of rotation, which then propagate through the
slab with different wave vectors k~ = run~/c and n

np ~ gB, where np is the refractive index of the slab in
the absence of the magnetic field, np = ~e.

When the wave leaves the slab it is, in general, ellip-
tically polarized and the major axis of the ellipse is rotated
with respect to the original direction of polarization. This
second effect is due to the difference in phase velocity
between left and right circularly polarized light and is
known as the Faraday effect. The Faraday rotation 0& (the
angle between the major axes of the ellipse and the initial
direction of polarization) is proportional to the magnetic
field and to the time spent by the light inside the slab.
Faraday rotation is our magnetic clock and plays for light
the same role as Larmor precession for electrons.

If we neglect the influence of the boundaries of the
slab, which is a good approximation when np = n], the
standard Faraday rotation is

~gBL
0p = = Arp, (2)

2cfLp

where f), = cugB/2np and rp = Lnp/c is the time that
light with velocity c/np would take to cross the slab.
When reflection in the boundaries is important, the time
spent by the light in the slab is in general bigger,
since it can cross the slab a different number of times.
Furthermore, if L is in the order of magnitude of the light
wavelength in the slab, interference effects are important
and may drastically change the time spent by the light in
the slab.

First of all, we can relate the transmission amplitudes
for right t+ and left t polarized light with the Faraday
angle of rotation 0& for any general system. This was
first done by Aronov and Gasparian [16]. All the relevant
information about both the angle of rotation and the
degree of ellipticity is contained in the complex angle 0,
defined in terms of the complex components of the electric
field of the outgoing wave, E, and E~, as

Ez E+ —E t+ —t
tan0 = ' = i = —i — . (3)

Ey E++E t++t
E~ is the electric field of the outgoing right (+) and left
(—) polarized light, E~ = EY ~ iE, . As the incoming
right and left polarized waves have the same amplitude,
E~ is proportional to t . The previous equation can be
rewritten as

part of the angle 0 is equal to

1 2
This corresponds to the Faraday rotation, which is well
known to result from the phase difference between left
and right polarized light. The imaginary part of 0 is

=1 T+
02 = —ln

4 T (6)

and corresponds to the ratio of ellipticity.
The presence of the magnetic field produces two effects

on the light: it rotates the plane of polarization and it
generates ellipticity. We have seen that both effects are
quantified through the complex angle 0. We can naturally
associate a complex interaction time of the light in the
region with the magnetic field to this complex angle,
which we do next, analogously to what Biittiker did for
electrons [9] (he does not consider explicitly a complex
time, but his final traversal time is the modulus of the
analog of our complex time).

In a small magnetic field the effective indices of
refraction for the two circular polarizations are in first
order in B:

Then 0~ is equal to

gB
fl~ = np

2 pip
(7)

gB Bi/t Anp BP
0] = (g)

2np t9np cu Bnp

where A was defined in Eq. (2), and P is the phase of
the transmission amplitude in the absence of a magnetic
field. By analogy with Eq. (2), we define the following
characteristic time:

Similarly, 02 is given by

np BP
M tl np

nnp ~»T
2M Bop

(9)

(10)

where T is the transmission coefficient for B = 0, and we
can define a second characteristic time as

7 = 7~ L'T2. (12)

The results are very similar to those obtained for a quan-
tum particle [10,17]. The characteristic time associated
with any wave (classical or quantum mechanical) has a
complex magnitude. The real component of this time is
analogous to the time associated with Larmor precession

02 np elnT
72 =

A 2' Rnp

So we have arrived at a complex characteristic interac-
tion time 7. for a classical electromagnetic wave in a given
region
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in the electronic case, introduced by Baz' [7]. The imag-
inary component is analogous to the Biittiker time associ-
ated with Zeeman splitting in the electronic case.

We believe that the Feynman path-integral technique,
as used by Sokolovski and Baskin [10] for quantum
particles, would produce the same result as ours when
applied to electromagnetic waves.

For a slab, the transmission coefficient is given by [15]

noT = 1+ stnx~
2npn] )

and the phase P by
2 2np+ n]

tang = tanx, (14)
2npn1

where x = ornnL/c Substitu. ting these expressions in

Eqs. (9) and (11) we obtain for the two time components

(no + n, )L (no —n))
7] T' + sin2x . (15)

2cn& 4nonl G0

and
2 2 2 2 2 2

np —nt nn + nt . 2 L(np —n))
72 T sln2x + sin2x .

2npnl 2M npn ~ 4cn)

(16)

(18)

in some frequency ranges, the oscillatory character of the
second term on the right-hand side of Eqs. (15) and (16)
results in traversal times significantly smaller than the one
corresponding to crossing the slab at the group velocity in
the medium.

Following the analogy with the electronic case [18],
we can rewrite Eqs. (15), (16), and (12) in terms of
derivatives with respect to frequency as

8 lnt r
7 =

L (17)
&co M

Here r is the amplitude of refIection for the slab, given by

r = exp(i(P —7r/2)]T'~ sinx.,(z (no —n, )
2npn&

The expression for the traversal time of electromagnetic
waves in terms of transmission and reAection amplitudes,
Eq. (17), is formally the same as for electrons traveling
across any general barrier [18]. Thus we expect Eq. (17)
to be of rather general validity.

From Eq. (17), or from Eqs. (15) and (16), we can eas-
ily check that the complex time satisfies r( —~) = r*(cu).
This implies that the real and imaginary components of
time verify integral relations similar to Kramers-Kronig
relations for the dielectric function [15].

The real part of the time given by Eq. (17) is related to
the group velocity, as it is denoted by the derivative with
respect to frequency. It produces the time that the peak
of a wave packet takes to cross the slab.

Our results are valid for any wave packet provided it
is longer than the width of the slab, so that interference
effects due to multiple refIections are important. The

traversal time of very short pulses would be the time taken
to cross the slab at the group velocity, plus the two small
delay times associated with the interfaces [18].

We can also consider the time spent by the reflected
wave in the slab. The relevant information about both
the angle of rotation and the degree of ellipticity of the
reflected wave is now contained in the complex angle 0( )

given by

g( )

2 f'—
(19)

In analogy with transmission, we associate two times with
the two components of this complex angle, and we find
that the real component of time is equal to 7.~, while
the imaginary component is equal to rz~r~ —/T So w.e
arrive at the following expression for the reflection time

(z).

(eff) 2= r& + p r2 . (21)
This is another example of how the two time components
give us the full information of the traversal time problem.

In Fig. 1 we plot the transmission velocity obtained
from Eq. (17) (dashed line) and take into account the
previous correction (solid line) as a function of the
thickness of the evanescent region together with the ex-
perimental data (points) of Enders and Nimtz [13]. The

~")=~, +i (20)
T

The same relationship holds in the electronic case [9].
We extended our calculations to a layered system,

with the help of the method developed by Aronov and
Gasparian [16], and found that Eq. (17) is still valid,
within the analog of the effective mass approximation
for electrons. As for electrons [19], 7~ corresponds to
the density of states and 7.2 to the localization length of
electromagnetic waves.

We have applied Eq. (17) to the microwave experi-
ment of Enders and Nimtz [13] which measured the time
taken by an electromagnetic wave packet to traverse an
evanescent waveguide region and obtained superluminal
speeds. They calculated the time by Fourier transforming
the experimental frequency data to the time domain, so
that they do not take into account the r/or contribution
in Eq. (17). The strong dependence of the transmission
coefficient with frequency in the evanescent region causes
a shift in the peak of the frequency distribution, which,
combined with the fact that waveguides are highly disper-
sive systems, produces two interesting effects. First, the
transmitted packet travels at a higher speed than the in-
cident one, the same as happens with electrons tunneling
through a barrier [1]. Second, there is a correction to the
delay time (i.e., the real component r~ ) that can be written
in terms of the imaginary component 7.~ of the complex
time. For an incident Gaussian wave packet of width p,
in the angular frequency domain, this correction is given
by:
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FIG. 1. Transmission velocity obtained from Eq. (17) (dashed
line) and from Eq. (21) (solid line) as a function of the thick-
ness of the evanescent region together with the experimental
data (points) of Enders and Nimtz [13].

horizontal line corresponds to the vacuum speed of light.
Our theoretical results fit fairly well the experimental
points.

We have introduced a magnetic clock to measure the
time in which a light wave interacts with the magnetic
field while in the slab. This time is related to the
Faraday rotation and the ellipticity of the polarization of
the outgoing light. The method is similar to the Larmor
precession approach for electrons, although some of the
problems appearing in the electronic case are absent. In
particular, the experimental measurement of the Faraday
rotation and of the ellipticity are much easier to perform
than the observation of the spin rotation.

Alternatively, we could use an electric field to measure
the interaction time of the electromagnetic wave in a given
region. The Kerr effect, for a transverse electric field, and
the Pockels effect, for a longitudinal field, are potential
electric clocks for light waves.
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