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Correlators of Spectral Determinants in Quantum Chaos
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We generalize an approach recently introduced to study arbitrary correlators of spectral determinants
in quantum chaotic systems with broken T invariance. The utility of this method for obtaining
generating functions for a variety of universal correlators is illustrated with several applications.
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Despite the success of the supersymmetry approach [1]
in describing the universal properties that characterize the
phenomena of quantum chaos, its application is still at
present restricted to a subset of correlators that involve
at most two points. More traditional methods of random
matrix theory [2] provide a complementary approach, al-
though their application again brings some restrictions. In
this Letter we will generalize a third approach, originally
introduced by Guhr [3], to study a whole class of universal
correlation functions applicable to quantum chaotic sys-
tems with broken T invariance (unitary symmetry). The
virtue of this approach, which relies on a superalgebraic
construction, lies in its straightforward application. Since,
in contrast to Efetov's supersymmetry method, final ex-
pressions are not presented in terms of an integration
over a restricted saddle-point manifold (the nonlinear o.
model), this technique draws no distinction between two-
and higher-point functions. All are equally tractable.

The function that we consider involves the general
many-point correlation of spectral determinants

m

, det(UI —H)
where the normalization at = ( diet H ™I)ensures that
8' remains finite as the number of levels % -. oo. We
will restrict attention to even values of l + m where the
correlation function becomes universal on scales of {Uj
and [V) comparable to the average level spacing. In the
same limit the correlator for I + m odd is vanishingly
small.

Apart from its role as a generating function for density
of states (DOS) fluctuations [3], W is related to a num-
ber of distribution functions. One example involves the
curvature distribution derived in Ref. [4]. A straightfor-
ward generalization leads to the following expression for
the generating function of the joint curvature distribution:
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where v(e) = TrB(e —H/6) denotes the dimension-
less operator for DOS. Here we have introduced e~ =
E„/5 with 5 = (E~+~ —E~), and x = XQC(0) which
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parametrizes an arbitrary external perturbation with
C(0) = ((lie~/ilX) ) [5,6]. A second example concerns
the generating function for the joint distribution of local
DOS

lp, (g) I'
1(s, to) = exp 2isyg v(co)g2 + y2
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where n = y —isy, Ren ) 0, and p~(ri) denotes
the p, th wave function at site rl. Equations (2) and
(3) are both straightforwardly obtained by exploiting the
statistical independence of the spectra and wave functions
and making use of the Porter-Thomas distribution [7].

Without the additional correlation to the DOS, both
have been examined in the recent literature. The curva-
ture distribution has been used as the first indicator of uni-
versality in statistics that depend on an external parameter
[4,5,8,9], while the distribution of local DOS, measured
through NMR, has been studied as a signature of chaotic
behavior in mesoscopic metallic grains [10,11].

Although Eq. (1) seems amenable to traditional orthog-
onal polynomial methods of random matrix theory [2] such
as that used by Ref. [11],the theory rapidly becomes in-
tractable as the number of points in the correlator increases.
At the same time, as will become clear, the disparity of
the order of the determinants in the numerator and denom-
inator rules out conventional supersymmetry approaches.
We will show that for unitary symmetry a third approach,
which generalizes a method introduced by Guhr [3], yields
the following exact expression involving the dimension-
less parameters u; = U;/5 and v; = V;/6,
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where Z = diag(U~, . . . , UI, V~, . . . , V ), and

(S~, . . . , S~, ~~, . . . , g ) denotes the (l + m) X N com-
ponent fields with complex bosonic 5 and fermionic

variables [14]. Formally the convergence of
Eq. (5) is assured by the inclusion of the metric
g = diag(1!l. !1 +I—l. ) [15].

The ensemble average over the Gaussian distribution of

A~ denotes a normalization constant, and, for conve-
nience, we have made the ordering such that (u~, . . . , u~ )
represent the l. parameters for which Imu; ) 0 while
(u~ +~, . . . , u~j denote those elements with Imu; ( 0.
With m. = l + (m —l) /2, the summation is performed
over the C, = m!/m„!(m —m. )! permutations which
interchange elements v, and v, between the two sum-
mations in the exponential. Our goal will be to obtain
this expression using a Gaussian distribution of Her-
mitian random matrices with unitary symmetry, and to
demonstrate its utility by obtaining explicit expressions
for K(s, cu) and L(s, cu). A more detailed discussion of
this general approach together with some applications can
be found in a longer paper [12]. The coincidence of the
statistical properties of random matrix ensembles with the
universal properties of quantum chaos is well studied in
the literature (see, for example, Ref. [13]), and we will
not discuss it further here.

The starting point, which is common to the supersym-
metry method, involves constructing an expression for
in the form of a Gaussian integral,

P(H)dH = C~ exp —
z TrH dH,2Nhz

where C~ is the normalization constant [2], leads to an
effective action,

(e s& ) e seff

Nd'
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W([U; V)) = a (—1) '(2~i) dlf)(e " '),
So = —iftgZQ, St = iftgHQ,

W The trace or supertrace operation for supermatrices fol-
lows the convention STrM = Tr M~~ —Tr MFF, where
Mzz and MFF, respectively, denote the boson-boson and
fermion-fermion block of M. The quartic interaction of
the fields can be decoupled by the Hubbard-Stratonovich

(5) transformation

d[Q) exp—N 2 iNE
eff

2
ST Q' + 0'g'"Qg'"0 . (8)

where Q denote (l + m) X (l + m) supermatrices with a block structure rellecting that of P Pt, and A~

2 '+ (N/7r)(' . Combining Eq. (8) with Eq. (5), integrating over P, and shifting the integration variablesQ: Q —~z/N, we obtain

N (
W(tU; V)) = aI A~ d[Q)exp — STr! Q— (NA—NSTr ln! Q I

N ) ) (9)

where z = Z/A.
Thus far, the method departs from the conventional

supersymmetry approach [1,15,16] only in that it allows
for a different number of bosonic and fermionic variables.
At this stage, however, instead of forming the usual
expansion around the saddle point of Eq. (9) to obtain
a nonlinear o model, we will exploit the fact that
the expression is of the form of an Itzykson-Zuber
integral [17] over the full pseudounitary supergroup that
diagonalizes the supermatrices Q. This approach was
introduced by Guhr [3] who used an equal number of
bosonic and fermionic variables to examine the high-point
correlator of DOS fiuctuations in unitary ensembles (see
also Ref. [18]).

The interaction S,r& in Eq. (7) is invariant under the
action of the pseudounitary supergroup SU(l. , l —l./m)
[15]. This is refiected in the structure of the Hubbard-
Stratonovich field Q. The supermatrix Q can be di-
agonalized by a matrix T H SU(l„ l —l, /m) such that

!

Q = T 'ST, where S = diag(b~, . . . , b~, if ~, . . . , ifm)
denotes the matrix of eigenvalues with b; and f; taking
values on the range —~ to oo. The integration measure is
then given by

d[Q) = const X BI (S) d[S) d/L[T), (10a)

H', (,(b. —b )H„(,(ifp
—

if. ,)
B( (S) =

i . (10b)
,-i(b —if/)

Previous studies have demonstrated the extension of
the Itzykson-Zuber integral to the superunitary group
SU(l jm) [19,20]. Similar considerations suggest a fur-
ther extension to the pseudounitary supergroup SU(l„l-
l /m). However, since these arguments are somewhat
technically involved we will reserve their discussion to a
longer paper [12] and make use of several applications of
Eq. (4) to justify the validity of this approach. The result
of the psuedounitary integration closely parallels that of
the superunitary group and leads to the expression [19,20]
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The determinants involve only those permutations of eigenvalues 5 which can be obtained from one another by the
action of the psuedounitary transformation T E SU(l„ l —l /I). The expression that appears from the combination
of Eqs. (9), (10), and (11) involves the sum of many terms arising from the expansion of the determinants. However,
the interchange of integration variables in 5 shows all contributions in the expansion to be identical. Taking one
contribution, and shifting back S ~ S + ~z/N, we obtain

W((U; V)) = const X
B( (S + 7rz/N) N NA & vrz

d
I S] „exp — STr S —N STr ln

I
S +

B~ (z) 2 N
(12)

The problem of evaluating the correlator of spectral
determinants has been reduced to a set of l + m real
integrations over the eigenvalues of S. It is at this stage
that we make use of large N to estimate the integral by
means of the saddle-point approximation as described in
Ref. [3]. For problems of physical interest the dimen-
sionless source z is of order unity and does not affect the
saddle points: So = diag(boi, . . . , boI, ifoi, . . . , ifo )
where the elements (bo, ) and tifo;), in principle, take
values of ~i. However, the saddle-point values of the
bosonic variables bo; = ~i lie off the real axis, and

a deformation of the integration contour is required to
reach them. This has to be done in such a way that
singularities of the integrand are not crossed. In particu-
lar, the signs of the eigenvalues, Imb;0 must be chosen
to be consistent with those of Imu;. This implies that

I So]gp = ig~g. Conversely, the saddle points associated
with the fermionic degrees of freedom fo; lie on the real
axis, and must all be taken into account.

The leading order contribution to the integral comes
from the value of the integrand at the saddle points.
Fluctuations give corrections which are as small as 1/N
[3]. As a result, we obtain

gr'((U ~ P)) = t X (—I) ( ' * ( )l l g (Z ' Zi=(-. +i ' Zr=i " Zs=m, +

Bi (z)
(13)

where m, is the number of +i s in the fermionic block
of Sn, and +Is, l denotes the sum over all possible saddle
points. This involves the interchange of all possible signs
of ifo, in the fermionic sector of So. However, although
the number of such terms is 2, not all of them are of
the same order. Some are as small as 1/N, significantly
reducing the number of terms that must be taken into
account. This can be seen by considering a typical
factor arising from the numerator of the integrand: ifo; +
vry;/N —

ifo&
—my&/N. If ifo, = ifoj, this factor is

proportional to 1/N, while if if0; = —ifoi, y; and y~ can
be neglected and it becomes of order unity. If there are
tt, terms which take the value of i in the bosonic sector
of 50, and m, in the fermionic sector, there is a relative
factor of N ' =+'- I' '-: multiplying the contribution
of this point to Eq. (13). The maximum of this factor is
achieved when I, = l. + (I —l)/2. Then only C
saddle points have to be taken into account. Applying this
condition we arrive at the expression shown in Eq. (4).

Equation (4) represents the central result of this Letter.
As a generating function, the correlator of spectral deter-
minants allows access to a number of useful correlation
functions. To conclude, we will apply Eq. (13) to deter-
mine algebraic expressions for several examples. As a
simple application we begin by considering the generat-
ing function for local DOS

P(s) = exp 2isy P IP (g)l'
+ y

= W(in, —in;iy, —iy), (14)

P(s) = P (n, y),

P.(,y) = g (n + o-y)2 —2m'(n —cr y)
40 &Q. y

(15)

This result coincides with that obtained in Ref. [10] (see
also Ref. [11]).

Having verified this approach with a known example,
let us consider the two generating functions defined pre-
viously in Eqs. (2) and (3). Both cases require the appli-
cation of a nonsupersymmetric construction. Beginning
with the joint curvature distribution, applying Eq. (4) to
the case where s ) 0, we obtain

where the notation is taken from Eq. (3). As a su-

persymmetric combination, this average can be com-
pared with the known result first obtained by Efetov and
Prigodin [10]. Adopting the approach above, l. = 1,
m, = 1, and we need consider saddle-point contribu-
tions from 2Ci = 2 terms: So = diag(i, —i;i, —i) and
So = diag(i, i; —i, i) A—pplyin. g Eq. (4) we obtain
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K(s, or) = co e lS co
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where P~ 2 are defined in Eq. (15). In this case, the
validity of Eq. (17) can also be checked in the same
limits. For s = 0 (ct = y), L(0, or) corresponds to the
average DOS, which is independent of cu. On the other
hand, as ~ ~ oc the decoupling of the average recovers
the generating function for the local DOS already obtained
in Eq. (15). Again, both limits bare inspection.

Equations (16) and (17) represent just two examples of
where the average 8' can be exploited. Further examples
include generalizations of the distribution of resonance
conductance peaks in quantum dots [21] as well as the
sensitivity of chaotic wave-function intensities to changes
in an external perturbation [22]. The extension of this ap-
proach to orthogonal and symplectic symmetry relies on
the construction of the appropriate Itzykson-Zuber inte-
gral corresponding to Eq. (11). However, to our knowl-
edge, for the pseudo-orthogonal and pseudosymplectic
supergroup, such a generalization has yet to be found.

To conclude, in this Letter we have obtained an exact
analytical expression for a whole class of correlators
that characterize quantum chaos for systems without
T invariance. The utility of this approach has been

where Rz(or) = 1 —sin (~or)/(7ror)2 denotes the two-
point correlator of DOS [2]. [An expression for values of
s ( 0 can be found by complex conjugation of Eq. (16).]

The validity of Eq. (16) can be tested by considering
two limiting cases. First, for s = 0, K(0, or) describes
the two-point correlator of DOS Iluctuations [2]. Second,
as cu ~ ~, the generating function should collapse to
the disconnected average involving the average DOS and
the Fourier transform of the known curvature distribution
[4,9]. An inspection confirms that both limits are realized
by Eq. (16). We remark that, in the limit of or ~
0, K(s, or) = Rz(or)or/(or —is) Its .Fourier transform
implies a joint curvature distribution which vanishes
for o3rte~/t)x ) 0 and decays exponentially at a rate
proportional to or for oriole~/Bx ( 0. This contrasts
with the power law decay of the uncorrelated curvature
distribution (or ~).

Turning to the second generating function, Eq. (4)
implies

demonstrated with the derivation of two distribution
functions.
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