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Reduction of Weak Interaction Rates in the Supernova Core
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We reinvestigate the effects of nucleon-nucleon interactions on the semileptonic weak processes that
control the neutrino physics in a supernova core. We find clear evidence that any spin or isospin
dependent interactions act to reduce the weak interaction rates. Taking the effects of the single pion
exchange force as an example, we find large reductions over the whole range of conditions that prevail
from the inner core to the neutrino photosphere.

PACS numbers: 97.60.Bw, 13.15.+g, 95.30.Cq

The theory of the supernova process depends in a
number of ways on the rates of neutrino processes within
the core and the hot expanding cloud. These rates are
important to supernova dynamics [1—3], to setting the
parameters of the neutrino pulse that escapes the star
[4,5], and to the nucleosynthesis scenario [6,7]. The rates
are equally important in the dense interior, where they
determine the time scales for cooling and deleptonization,
and at much lower densities, where they determine the
location of the neutrino photosphere, and, in consequence,
the effective temperature of the radiated neutrino spectrum.

Most calculations of macroscopic phenomena have
used the free particle cross sections, with the required
modifications for Fermi statistics, as the basis for the neu-
trino transport estimates. Modifications of these formulas
in the region of the dense core have been proposed, using
Fermi liquid theory [8], and there are some further effects
of the nuclear forces that can be calculated from the bulk
properties of the matter and that probably reduce the neu-
tral current opacities by 30%—40%%uo even at lower densities
of the neutrino photosphere where the nucleons are totally
nondegenerate [9]. The effects that we investigate in the
present paper are different and, we believe, more impor-
tant over the whole density range.

We consider a system composed of a nondegenerate
gas of nucleons at temperature T, together with electrons
(and positrons) in thermal equilibrium with a chemical
potential, p, These are the conditions that prevail, post-
shock, in much of the region between the neutrinosphere
and the dense interior region. We refer to the basic weak
reactions, v + n ~ e + p, etc. , as quasielastic reactions.
When we include interactions between the nucleons in
the medium we then obtain, in addition to the quasielas-
tic amplitudes, amplitudes in which there are changes in

the state of the medium, which we shall refer to as in-
elastic channels. It is the inclusive rates of conversion
between one lepton state and another that matter in neu-
trino transport calculations. The key to the reduction of
rates is a close relation between the inelastic channels and
a medium dependent (and momentum dependent) wave
function renormalization, applied to the quasielastic am-
plitude of the participating nucleon in the reaction. The
two contributions tend to cancel, but the negative renor-
malization contribution is characteristically larger in mag-
nitude than the (positive) inelastic contribution.

This phenomenon, the cancellation of the largest part of
quasi-inelastic contributions by what could be called "ra-
diative corrections" to the quasielastic part, is a familiar
effect in the perturbation theory of some vacuum rates, for
example, bremsstrahlung in the collisions of charged parti-
cles, where the infrared divergence cancels when the terms
are summed. In media, the calculation of the finite tem-
perature corrections (from the photon and e+e baths) to
the rates of weak processes just prior to He synthesis in the
early Universe [10] provides a closer analogy to the con-
siderations of the present paper [11]. The necessity for
medium dependent wave function renormalization is quite
general in any perturbation calculation for processes in-
volving continuum states in an infinitely extended medium,
since the asymptotic wave functions never escape the in-
teractions with the medium.

As a demonstration, we first consider the inclusive rate
I for transformation of a neutrino through the process
v, + n ~ e + p+ (excitations or deexcitations of the
medium), where the neutrino has four-momentum, p~'1,
and where we have, for the moment and for illustration,
taken the incoming neutron to be at rest and to have no

!

interactions with the medium:

1 = (g „n 2/E, )Tr[ y~(1
—ys)p, y (1 —ys)H(p1'))j[6n 6& + G&(6x —6o 6&)].

Here n, is the density of neutrons, and

H(p, ) = Im i
d pdF
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where G(p, E) is the nonrelativistic Green s function for the proton. (In this example, we have, for simplicity, taken
the medium to contain no electrons; otherwise an electron Fermi function would appear in the result. ) Figure 1 pictures
a contribution to I form the term in G that contains an interaction with a "spectator particle in the medium. If we
substitute the free Green's function,

Go(P, E) = (E —p'/2M) '
~

we obtain the usual form for the free reaction rate, with

rolp. —Pl —r (p. —p)—
(2')'[(p —p)z + mz]'~2 ' "" ' ' 2M

(4)

where 6„pis the protron-neutron mass difference. The
interaction with the medium, which is taken to be trans-
lationally invariant, is contained in the complete Green s
function

2 ——1

We separate the nucleon pole term in G(p, E) as

G(P, E) = I
1 —»(p, E)/&E] 'IE=p2/2M BE(p)—

E —p2/2M —BE(p)

G(p, E) = E—

+ higher singularities

d P d Pp n (P )np(Pp)Z(Pp)l (P )

Z(p) + higher singularities . (6)E —E(p)
The decay function H, of (2), coming from the pole term
in (6) alone, is now given by (4) with one modification;
the renormalization factor Z(p) is inserted under the
integral.

Next we apply these results by calculating the rate
for the reverse process, e + p ~ v + n, where for the
moment only the proton interacts with the nucleons in
the medium. The complete reaction rate, averaged over
a thermal distribution for the initial proton, is given by

where n(q) is the density function for the scatterers in the
medium. The Z factor, to second order, is then

Z[p] =1— d'k M2n(q)[V(k)]2
(2~) [p k —q. k —k]

! balance, to be the same that we calculated above. We
have here made a quasistatic approximation of the nucle-
ons in which we have neglected nucleon motion in the
basic weak interaction process. This is a valid approxi-
mation when F., = k~T, since the change of the nucleon
energy is then of order E,(k&T/M)'~, and it is the rea-
son that the function I ( l in (g) is a function only of the
electron energy. But in the excitation terms the recoil in
the scattering of nucleons from each other will have to be
taken into account, since the energy transfers to and from
particular nucleons are of order k~T.

We calculate the function X(p, E) for the case in which
the incoming proton interacts with other nucleons in the
bath through a potential, V(r). To second order we obtain

d k

X
2Mn(q)[V(k)]'

(g)2ME —(p —k)z —2q k —k' '

Next we calculate the excitation contributions to the rate,
where I (ol is the unperturbed rate of the reaction. The to second order in V, and add them to the Z corrections

!

factor of Z(p) in this expression is assured, by detailed of (9) substituted into (7),

BI„= , r(" (p, )M n, (p, )n„(p)n(q)IV(k)l'

X (h(E, —5„p—M [k —p . k + q . k])[h(E, —b„„)]—1) (10)

where we shall consider two different possibilities for the
function h(x), the case in which the original medium does
not contain neutrinos, in which case h is just

h(x) = x 0(x),
and the case in which neutrinos are trapped and are in near
thermal equilibrium, with a chemical potential p, ,

h(x) = x (1 + exp[(p, , —x)/T]) '. (12)
In the trapped case the omission of the theta function
means that we have automatically included the transition
rate for the reaction v + e + p ~ n as well as for the
reaction e + p ~ v, + n. Near the neutrinosphere, of

course, neither (11) nor (12) holds. The results in this
case should lie between the two limits.

The integrands for the renormalization correction (the
—1 in the bracket) and for the excitation-deexcitation
correction in (10) are almost identical, and of opposite
sign. The excitation or deexcitation terms are saved from
canceling the renormalization term only by the fact that
the neutrino energy is altered by the amount of energy
delivered to, or absorbed from, the medium. The ratio
of the h functions, evaluated at different arguments, is a
correction to the factor I to take into account the new
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FIG. l. A graph for v + n ~ v + n, where the intermedi-
ate proton interacts with a particle in the medium, labeled
"spectator. " The effects of this interaction on the rate of
v + n ~ e + p are given by (I) and (2), where G is the
Green's function for the intermediate proton.

kinematics of these terms. If the greater propensity is
for the reacting system to deliver energy to the medium,
rather than to absorb it, as we shall see that it is, the effect
of the potential, acting between the proton only and the
other nucleons in the medium, is unambiguously to reduce
the reaction rate.

Now we consider a situation in which the nucleons
in the weak process interact with the nucleons in the
medium with a spin and isospin independent potential, so
that the final neutron in the decay process has the same
interaction with the medium as the initial proton. The
renormalization and excitation terms in the rate correction
from a double interaction of the final nucleon with the
medium, as shown in Figs. 2(a) and 2(b), are the same
as those from the initial nucleon. But the interference
terms and vertex correction, shown in Fig. 2(c), combine
to cancel these terms completely.

However, the introduction of spin and isospin depen-
dent potentials removes this cancellation by introducing
differing coefficients for the individual terms. For the
cases that we shall consider, the spin and isotopic spin
factors favor the graphs of Figs. 1(a) and 1(b), with two
interactions with the medium on either the initial or fi-
nal nucleon participating in the weak interaction, over
the interference terms and vertex correction. As an ex-
ample we consider the spin and isospin dependence of
the pion exchange force. In the graphs of Figs. 2(a) and
2(b) and considering just the axial vector nucleon cur-
rent term, we encounter the spin trace Tr[(cr . k)(cr .
k)o.;o.;] = 3kz, whereas for the graphs of Fig. 2(c) we
obtain instead Tr[(o. . k)a-;(o. k)o-;] = —k . On the
isospin side, we begin with an isospin density matrix
for the nucleons in the medium, pT = F„(1+ r3)/2 +
(1 —F~)(1 —r3)/2, where F„is the proton fraction.
The isotopic factor of the sum of the graphs of Fig. 2(a)

FIG. 2. Graphs for corrections to the rate of e ~ v. The
solid unlabeled lines are nucleons. The dotted lines stand
for the potential. The relative spin factors are given for the
axial current process. (a) Wave function renormalization terms.
Isospin factor as in (14). Spin factor = 3. Multiplying function
is negative. (b) Excitation terms. Isospin factor as in (14).
Spin factor = 3. Multiplying function is positive. (c) An
interference term and a vertex term. Isospin factor as in (15).
Spin factor = —]I. Multiplying functions are the negatives of
those from (b) and (a), respectively.

or 2(b) is

(Tr(r; r, r+ r pr]
+ Tr(~+r r;7, pr])Tr[,r. ;r,pr] = 6F

while for either of the graphs of Fig. 2(c) it is

(Tr[r, r+r, r pT]

(13)

+ Tr[r+r;7 7/pT])Tr[r, ~/pT] = 2F„, (14)—
giving additional weight to the "type (a) and (b)" graphs.
We define the one pion exchange potential (OPEP) as

V =
~
(rr'k)(cr k)~'r (k + m')f l

I )
(15)

where f = 1. In the present calculation we shall not need
the usual cut off function in (15) since there turns out
to be a natural cutoff at k = (MT)', which for tem-
peratures of less than 50 MeV is less than any standard
phenomenological cutoff. Using the spin and isospin fac-
tors calculated above, we write the sum of all the second
order correction graphs, coming from the OPEP poten-
tial, to the axial vector current contributions (which con-
tribute 3/4 of the unperturbed rate) to the weak process.
In (10) we make the following modifications: (a) a mul-

tiplying factor of 8F„/3 from counting all of the per-
mutations of the graphs with the appropriate isotopic
and spin factors; (b) ~

V
~

replaced by (f /m ) k (k +
m ); and (c) n„and n are replaced by the nucleon
density distribution for the medium, n„(p)~ n(p) =
n/v (2zrMT) exp( —p /2MT). Dividing out the unper-
turbed rate (itself proportional to F~n/v ) we obtain

where

BT/T "1 = —— ~ T ' M~ vr f (2/A) = —1.2(-
10M V&'" J

2.7 X 10'4 g cm 3) T I Jo)

J = —(Szr MT ) dE, p, E,n(E, ) d gd k[exp( f /4MT)]—
X k'(I'+ m')-'(k' —g. I) '[h(E, —Z„„—M 'P' —g I]) —h(E, —Z„„)], (17)
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Jp = T
—5 dE, p, E,n(E, )h(E, —6„). (18)

(J/J, )
6

We have carried out the integrations in (17) for two
cases: (a) The case in which there is no initial neutrino
occupation, with the function h given by (11). We
consider the separate dependence of J/Jo on T and p, „

but it appears that at fixed T the dependence on p, , is
absolutely negligible, with only a 5% difference between
the value for p, , = 0 and for p, , = 5T for any of the
values of temperature in our range. (b) The case in
which the v, are trapped, in near equilibrium, with a
chemical potential p, , » T. In this limit all of the action
is near the Fermi surface for the electron and neutrino.
To leading order in T/p,

„

the ratio J/Jo is independent
of p, Thus we can plot the results in either case as a
function of temperature alone, as displayed in Fig. 3.

We see that for a value of density near nuclear density,
the correction would be more than 100%, clearly a
nonperturbative approach is required. But more surprising
is the fact that at a density of 10% nuclear density, and,
for example, a temperature of 10 MeV, the correction is
approximately a 50% reduction, in either of our cases.
At the neutrinosphere, at about p = 7 X 10' gcm and
T = 5 MeV, the correction is still at the 15% level. For
the vector nucleon current part of the charged current
reaction we get a result for BI /I of the same form, but
increased by a factor of 3/2.

We have, in all of the above, omitted the exchange
terms that are present when the two initial nucleons or

5.5.
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FIG. 3. The values of J/Jo versus temperature as calculated
in two cases. Dotted curve is the case of no neutrino occupancy
of the medium. Solid curve is the case of trapped neutrinos,
with p, , » T.

two final nucleons are in the same spin and isospin state.
Roughly speaking, we would expect a reduction of a
factor of 4, compared with the direct terms, from the
spin and isotopic part of the calculation, and some further
reduction that comes from replacing the factor [V(k)] in
(11) by V(k)V(p —

q + k). Calculations confirm that
the corrections due to the exchange terms are about 10%
of the direct terms. (They are of miscellaneous sign and
depend somewhat differently on the temperature. )

All of the above considerations are applicable to the
neutral current neutrino cross sections in a medium with
modification only of the spin and isospin factors, For
example, (13), for the isospin factor, is replaced in
Figs. 2(a) and 2(b) by

Trir;r&[r3(1 —sin Oiv) —sin Ow] pr)Tr[~; r~pT] + Trt[r3(1 —sin Oiv) —sin Oiv] r;r~pz)Tr[r, r~pT].

We find reductions about 50% as large as in the case
of the charged current reactions, for the dominant axial
vector nucleon current (A) term.

It seems likely that the single pion exchange force will
make the greatest modification in the weak rates. Other
spin or isospin dependent forces between the nucleons
will also give rise to a decrease in rates, as is possible
to see by looking at the internal quantum number traces
in the graphs of Fig. 2 for all possibilities; the weights of
graphs of Figs. 2(a) and 2(b) are always greater than those
for Fig. 2(c). Therefore it seems unlikely that there would
exist a mechanism that would undo or greatly mitigate the
substantial decreases that we find from the mechanism of
the present paper.
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