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Reduced System Dynamics from the N-Body Schrodinger Equation
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We derive the time-dependent wave function for one particle in the company of N —1 other particles
using the method of iterated projection. Using this approach, we confirm the general philosophy of
describing a quantum system by a flow component and another component which may be given various
descriptions as stochastic, heat bath, or quantum jump processes. The possible equivalence of the
Breuer-Petruccione reduced system dynamics [Phys. Rev. Lett. 74, 3788 (1995)] and ours is explored.

PACS numbers: 03.65.Db, 42.50.Lc

In a recent Letter, Breuer and Petruccione [1]derived a
differential Chapman-Kolmogorov equation for the prob-
ability distribution of a reduced system. It has the form of
a Liouville master equation defining a How-jump process
in projective Hilbert space. The simplifying conditions
used are the Markov and weak-coupling assumptions. We
call this result the main qualified conclusion of Ref. [1],to
which we refer the reader to for the definitions used in that
derivation. In this Letter, we adopt a reduced system dy-
namic approach as well, but use a different strategy: We
formally find the reduced wave function for k particles
from the N-body Schrodinger equation using the method
of iterated projection [2,3], without using the above sim-
plifying assumptions. We then approximate the resulting
exact series solution, not a differential equation.

We start with the Schrodinger equation

where

oo,eVen

m=0
h= P h„, (3)

n=1

dsp F(t, si)

(4)

h„= —(I/h)' dS& ds2 F(t, si)

X PHQHG(si, s2)h„2(s2), (6)

X PHOHG (s i, s2) g 2(sq),

gp ——exp( —itH/h) i/t(0),

0t = Pufiv = (I/& ") N —k y

ih = Hdtv,
3 gatv (I)
Bt

where PA = P~(r, t) and r = (ri, r2, . . . , re�), the co-
ordinates of the N particles making up the system. Instead
of using the reduced probability distribution, we define the
reduced wave function

hi = —(i/It)

l
F(t, t, ) = exp ——(t —t, )PH

l
G(t, ti) = exp ——(t —ti)QH (9)

dsi F(t, si)PHG(si, 0) (1 —P)giv(0),

(7)

to represent the wave function of k particles in the
company of N —Ic other particles. A is the volume of
the system. We may drop the subscript k and simply
call Pk, Pt, as P, P. Using Refs. [2,3], we may write the
formal solution for this k-particle reduced wave function

= 1 —P. (10)
We have dropped all subscripts k for the moment.

Let us differentiate Eqs. (4) and (6) twice with respect
to time:
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g,'„+ (i/R)PHg + (1/6) PHQH dsp G(t, sp)gm 2(s2) = 0,

g" + (i/6)PHg' + (1/6) PHQHgm p
—i(1/6) PHQHQH dsp G(t, s2)gm 2(s2) = 0, (12)

h„' + (i/6)PHh„+ (1/6) PHQH ds2 G(t, s2)h„2(s2) = 0, (13)

h„" + (i/6)PHg„' + (1/6) PHQHg, 2
—i(1/6) PHQHQH ds2 G(t, s2)h» 2(s2) = 0. (14)

Summing Eqs. (11) and (12) from m = 2 to ~, and likewise for Eqs. (13) and (14) from n = 3 to ~,

g' + (i/6)PHg + {1/6) PHQH dspG(t, s2)g(s2) =
go + (i/6)PHgo = 0

using Eq. (5),

g" + (i/6)PHg' + (1/6) PHQHg —i(1/h) PHQHQH ds2 G(t, s2)g( ps)
= 0,

h' + (i/6)PHh + (1/6) PHQH ds~ G(t, s2)h(s~) = hi + (i/6)PHhi

= —{i/6)PHG(t, o) (1 —P)P (0)

using Eq. (7), and

h" + (i/R)PHh' + (1/6) PHQHh —i(1/6)~PHQHQH ds2 G(t, sp)h(s2)

(15)

(16)

(17)

(1/6) PH—QHG(t, 0) (1 —P)fiv(0) . (18)

From Eqs. (15) and (17),
t

ds2 G(t, s2)g(s~)

(PH) ' g' —(—i/6) g,

(1/6) QH ds2 G(t, sq)h(s2)

= —{PH) 'h' —(i/6)h

(19)

The bracketed operator in Eqs. (21) and (22) may be
simplified to give

PH + PHQH(PH) ' = PH + PH (PH)
—PHPH(PH)

= PH (PH) ' = K, (25)

and the solutions of Eqs. (21) and (22) are

g = P(0) + [exp( —itK/6) —l]K 'PHQ(0), (26)

h(0) = 0, h'(0) = (i /6)PHG(t, 0—) (1 —P)Piv(0) .

The only assumption made so far is that the inverse oper-
ator (PH) exists. Where necessary, it is possible to use
the Feynman definition: (PH) ' = fo des exp( —MPH).
Similar inverse operators were used with the partitioning
technique [4—6] to calculate the energy spectra of simple
molecules.

—(i /6) G(t, 0) (1 —P) ii'w (0), (20)
which we can substitute into Eqs. (16) and (18) to give

g" + (i/6)[PH + PHQH(PH) ']g' = 0, (21)

h" + (i/6) [PH + PHQH(PH) ']h' = 0, (22)
identical except for the boundary conditions, which are
obtained from Eqs. (5), (7), (15), and (17):

g(0) = i//(0), g'(0) = —(i/6)PHD'l(0), (23)

h = [exp( —itK/6) —1]K 'PH(1 —P) P~(0) . (27)

From Eq. (2)

P(t) = P(0) + [exp( —it@/6) —1]K 'PHpiv(0) (28)

oo

P(t) = P(0) + P IC PHPtv(0).J' (29)

Equation (29) formally expresses the time evolution
of the reduced kparticle wave function in terms of
its initial value and the additional effect of the entire
N-particle wave function of all particles at initial time.
Equation (29) is deceptively simple, but expressed in a
form ideal for symbolic computation. Also Eq. (29) has
the feature that approximations may be introduced after
the forrnal solution is written down, not before, as in
Ref. [1] and many other formulations [7,8]. The richness,
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complexity, or statistics of the system in consideration
are all defined with the initial condition, including bound
states. At this point, we remark that while the early
projection techniques used to derive generalization master
equations use the same operator (k = 0), the method
of iterated projection substantially differs in approach
because it focuses on the formal, reduced solution of
the exact differential equation (1), instead of deriving
differential equations which can be solved only for special
cases.

We first put

H = Ho + H; = g Ho(j) + P V(r; —r~) (30)
j=1 I,J

and assume that HpPk = P~Hp, this is true for a large
class of Hamiltonians summed over one-particle labels.

For the purpose of this Letter, we put k = 1 and
evaluate the operators in Eq. (29) one by one. For j = 1:

( it)—
PH l/I/y (0) =, [Ho(1) ~/f (0) + PH; l// (0)] .

(—it)

(31)

Suppressing details, we find for j = 2:

where

Forj =3:

(—it)
KPHptv(0) = Ho(l)P)(0) + PM/tv(0),

(—it)2 (—it)

Mf(0) = (HOH; + H;Ho + H, )P~(0) .

(—it)'
K PHQJv(0) = ([Ho(1) + PM][HO(1) + b] 'Ho(1)P)(0)(—it)'

(32)

+ [Ho(1) + PM][Ho(1) + b] 'PM/tv(0)j.

In arriving at Eq. (32), we have used the property of projection operators P = P, and

(—~)'
(PH) 'P = des exp( —~PH)P = g [P(Ho + H;))'P

p J=p

(33)

where

(—~)'
[Hp(1) + a] P =

j=p j' des exp( —cu[Hp(1) + b]jP = (Ho + b) 'P, (34)

b=PH, (35)

which is simply a scalar for pair potentials. Hp(1) is the single-particle Hamiltonian for particle 1 alone, like a free
particle, or an electron in a Landau state, for example. Later we may simply write it as Hp where there is no confusion.
Forj =4:

4
/HO(1) + PM] [Hp(1) + b] [Ho(1) + PM] [Ho(1) + b] Ho(1)t//&(0)

+ [Ho(1) + PM] [Ho(1) + b] [Ho(1) + PM] [Hp(1) + b]

PM/tv�(0)

j
using the simplifications used earlier.

We can then write

p(t) = p(0) + H, (I)p(0) +, pH, y~(o)
(—it) (—it)

oo

+ g t(PH,'+ PM)[PH, + b] 'j~ '(PH„'+ PM-)P-(O),j'
where

M=HpH;+HHp+H;.

(36)

(37)

(38)

Now there is a class of potentials for which b = 0, such as the universal van der Waals potential introduced by Lu
and Marlow [9]—that this is so has not been observed before. We will treat the most general case (b 4 0) later [Io],
but for this class of potentials, and for illustrative purposes, Eq. (29) may be expanded, then regrouped, to include
in a series expression, the Taylor expansion of exp[( —it/R)HO(1)]. Skipping all the details, we can write for b = 0 the
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exact equation

P(t) = e """"0(0) + y ~ 0(0)J'
oo

+ P .
,

C, y (0), (39)

Bi =82=0, 83 = PMHp,

84 PMHo + HpPMHo + PMHo PMH

B~ = HoPMHo + HoPMHp + HoPMHo 'PMHo

+ PMHp + PMPMHp + PMHp PMHp

+ PMHp PMHo 'PMHp, (4o)

C] =PH;, C2=PM,
C3 = PMHp 'PM,

C4 = (Ho + PM + HoPMHO + PMHo 'PMHO )PM

Cs = (Ho + HOPMHO + HoPM

+ HoPMHp 'PMHp ' + PMHo

+ PMPMH, ' + PMH, 'PM)PM . (41)
The combinatorial rules for writing the other B~, C& may
be deduced.

Before we continue, we stress that one can invent
interaction Hamiltonians H; where b = 0, such as a
properly defined potential that includes attraction at large
distance and repulsion at short distance.

For the case b = 0, it is easy to verify by a term-
by-term integration over the coordinate r~ in Eq. (39)
that normalization is preserved and, therefore, guarantees
the validity of the usual probabilistic interpretation. The
general case is more subtle, for which we cannot make
the same statement so quickly [10]. We associate this
difficulty with the possibility of bound states.

But even when b 4 0, it could still be assumed to be
zero for the purpose of approximating the exact equation
(37). We will show in Ref. [10) that this is equivalent to
a generalized form of a weak-coupling approximation.

From Eq. (39), it is already possible to confirm the sug-
gestion from Ref. [1] that the behavior of the system con-
sists of a "flow" component from the first two terms and
some form of interaction with the large system. How-
ever, we stress that up to this point we assume a Her-
mitian Hamiltonian, and therefore we limit ourselves to
reversible systems. A detailed discussion of reversibility
and irreversibility, applicable to the present work, may
be obtained from Refs. [11,12], where projection oper-
ator techniques are also used. In brief, to arrive at ir-
reversible behavior, it is necessary to introduce one or
more of some common assumptions used to introduce ir-

reversibility, like an explicitly non-Hermitian Hamilton-
ian that includes dissipative terms, weak coupling, a "heat
bath, "or the neglect of "memory effects. " For this reason,
we cannot immediately compare the last term of Eq. (39)
with the corresponding terms in Ref. [1] which describe a
"jurnp process in Hilbert space. " What else we need to do
to reproduce the exact form of the "discontinuous quan-
tum jumps" of Ref. [1] from the third term is an open
question. But it is already possible to approximate the
third term of Eq. (39) with stochastic terms, depending on
the system under study.

Furthermore, our development in this Letter cannot ap-

ply to any nonlinear Schrodinger equation because of
the explicit form of the projection operator used in our
work, in contrast to other abstract and more general pro-
jection operators used by many authors [13]. However,
it is the simple character of our projection operator that
allows further reductions of the formal solution. In our
formulation, any semblance of nonlinearity can only arise
from the last terms of Eq. (37) or (39), perhaps provid-
ing an insight on how nonlinear behavior could arise out
of a linear Schrodinger equation. Nontrivial assumptions
must be introduced with the initial conditions, such as the
initial presence of bound or metastable states.

Hermitian or not, evaluating only a few terms of
Eqs. (37) and (39) eventually results in the violation
of conservation of probability, as we have verified in
previous work that uses essentially the same method
[2]. This is the analog, but not the equivalent, of
secular behavior in classical perturbation theory and
means only that the approximate solutions so obtained-
and the differential equations that such solutions satisfy-
are valid only for limited times. We have found that
evaluating more terms "postpones" divergent behavior for
later times, just as the corresponding differential equations
become valid for longer times. But when for analogous
simple models it becomes possible to evaluate all terms
and sum the analogous infinite series of Eq. (37), the exact
solutions are fully convergent [3,10].

We emphasize that Eqs. (37) and (39) are solutions
contracted from the many-body Schrodinger equation, in-
stead of an exact or approximate solution of an approxi-
mate differential master equation with identifiable "flow-
jump" components. Nevertheless, we reiterate that at no
point in the derivation did we have to invoke a Markov
assumption, nor assume weak coupling. So, in addition
to the clarification of conceptual modifications needed to
arrive at irreversible behavior, this Letter serves as an
independent confirmation of the qualified conclusions of
Ref. [1], using a straightforward reduced wave-function
approach, instead of a reduced probability distribution
formulation, and therefore, indirectly, an independent,
perhaps stronger, indication of the validity of different
realizations of stochastic methods [14].

I thank Professor Max Dresden for several discussions.
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