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Solitonlike Propagation of Exciton-Polariton Pulses
Supported by Biexciton Two-Photon Dispersion
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We present a new scheme of distortion free propagation of exciton-polariton pulses in the low-
intensity region. In this scheme, the anomalous nonlinear dispersion associated with the biexciton
two-photon transition compensates the group velocity dispersion to maintain the pulse duration. We
demonstrate the distortion free propagation of polariton pulses in CuC1. We compare the observed pulse
profiles with the calculated profiles using the frequency domain wave equation, where the lowest-order
coherent nonlinearity is taken into account. We obtain good agreement between the experiment and the
calculation.

PACS numbers: 42.50.Md, 42.50.Rh, 71.35.+z

Nonlinear propagation of an ultrafast optical pulse is of
interest for its application to high bit rate optical comrnu-
nication and ultrafast optical devices. In particular, the
formation of solitons in optical fibers has been studied ex-
tensively. In these studies, the carrier frequency of the
optical pulse is set to be far off resonant from the absorp-
tion edge of the material, and the quadratic group veloc-
ity dispersion (GVD), the lowest-order dispersion term,
is compensated by the third-order nonlinearity expressed
with the nonlinear refractive index n2 which is a real num-
ber with no frequency dependence. The temporal and spa-
tial evolution of optical pulses in such a situation can be
analyzed with the nonlinear Schrodinger equation (NSE).
In the actual system, the higher-order dispersion terms or
finite response time of the material affect the stability of
optical solitons. Although some extreme cases such as
shock term [1] have been examined in the frame of NSE,
the effect of nonlinear dispersion on the pulse propaga-
tion characteristics has not been fully explored. On the
other hand, distortion free optical pulse propagation in
the resonant region is also an issue of current interest be-
cause of their importance in the ultrafast optical switch-
ing devices such as the semiconductor directional coupler.
In the resonant region, however, NSE is not a good ap-
proach, because n2 shows a strong frequency dependence,
and higher-order nonlinear terms are important. Several
types of polariton solitons at exciton resonance have been
proposed [2—7]. An experiment is conducted in a semi-
conductor waveguide structure [8]. In these studies, the
pulse duration is maintained by the higher-order light-
matter interaction, that is a strong contrast to the case of
NSE where only the lowest-order coherent nonlinear in-
teraction is included.

In this paper, we propose a new scheme of soliton-
like propagation, where a strong GVD is compensated
by a nonlinear anomalous dispersion. A typical example
of the nonlinear anomalous dispersion is a two-photon
resonance (TPR) dispersion [9]. The TPR anomalous dis-
persion could compensate a strong linear dispersion of one-
photon resonance shown in Fig. 1. We now consider a

(a) (b)
Energyil

b

Q.&2

,=0
Wave number

FIG. 1. Schematic illustration of an energy diagram of a
three-level system (a) and a dispersion curve (b). A pulse
propagates at a two-photon resonance of level c. The solid and
dotted dispersion curves represent the polariton dispersion with
and without nonlinear dispersion, respectively. The anomalous
dispersion of the two-photon resonance compensates a strong
linear dispersion.

three-level system and pulse propagation at the TPR of
the highest level c. The level b is allowed for a dipole
transition from the ground level, and the dipole transition
causes a polariton dispersion. Figure 1(b) schematically
shows that the TPR anomalous dispersion compensates the
polariton GVD at the TPR. Thus we can expect a soliton-
like propagation under a certain condition. The optical
nonlinearity at the half band gap region in a semiconduc-
tor has potentiality for this scheme. However, incoher-
ent process prevails and obscures the resonant coherent
effect [10,11]. Biexciton TPR is another candidate for this
scheme. There exist very large coherent optical nonlineari-
ties at the biexciton TPR because of the giant dipole mo-
ment [12—17]. We explain this scheme using a frequency
domain wave equation considering the lowest-order coher-
ent nonlinearity. We demonstrate the scheme presenting
the femtosecond polariton pulse propagation at the biexci-
ton TPR in CuC1. The results are compared with numerical
calculations.
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Fourier components of the electric field of the pulse in the form of running wave is

COE(a, z)
—= E(~, z)e'"~ ~' , I. l + X"'(~)).

C
k (cu) =

where k(~) is the complex wave number and E(co, z) is the complex envelope function. Within a slowly varying
envelope approximation, the derivative of E(co, z) with respect to z is expressed as [18]

d~2X (~ ~ ~1 ~2 ~l + ~2 ~)E(~1 z)E(~2, z)E (~1 + ~2 ~, z)e

where we take account of only the lowest nonlinearity X(3l because we consider sufficiently low intense pulses, and Ak
represents phase mismatch

Ak = k(clP1) + k(co2) —k (col + ctP2
—cu) —k(cL1) . (3)

We consider a propagation at the TPR region shown in Fig. 1. If the energy difference b, A = Ab —A, /2 is much
larger than the spectral width of E(cu, z), X~3l is dominated by the TPR terms. In CuC1, the binding energy of I 1

biexciton is about 30 meV, which is larger than the spectral width of the subpicosecond input pulse. Thus we can
provisionally use y( ~ for the subpicosecond pulse propagation at biexciton TPR in CuCl,

(3) Np, ,p, 1
X (~ ~»~2. ~ —~i ~2) =

Am Ml M2 lcm AT CO 1 g

(
1 1 (3)X + + gnl-,

AT ~1 &y AT ~2
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where N is the number of unit cells per unit volume, p, , is
a transition dipole moment of the exciton, p, is the giant
dipole moment of the transition between the biexciton and
the exciton, A and AT are the resonance frequencies
of the biexciton and the transverse exciton, and y
and y are the dephasing constants of the biexciton and
the exciton [19). The nonresonant term X(,l of Eq. (4)

includes exciton resonance terms [~ Np, , /(cu —AT)3],
which are much smaller than the biexciton term because
of the large detuning. We ignore the term in the following
discus sson.

As the first approximation, we neglect the phase-
mismatched terms in Eq. (2) by putting ~2 = cu in the

!

integral,

(5)

where nonlinear change in the wave vector k "(co) is defined as

1 (cu)
2k(~) 1, c )

—E(co, Z) = i ! ! X (cu: o)l, cu, —col) IE(col, Z)! e "' ''dculE(cu, Z),

where k;(cu) is the imaginary part of the linear wave number k(cu). If the attenuation of the pulse is negligible [i.e.,
both k;(cu) and ImX& & are small], we can replace IE(col, z)! e '("')' in the integrand of Eq. (5) by!E(~1,0)I . In this
case, the solution of Eq. (5) has the following form:

E(,.) =E(,o)" ", (6)

kNL(
1 P'cu i

2k(cu) ( c ) X (~: ~1, ~, ~1) IE(~1,0)l d~i, (7)

which has anomalous dispersion in the vicinity of biex-
citon TPR frequency. In Fig. 2, the solid curve shows
the dispersion curve of the real part with nonlinear dis-
persion [k(~) + k (cu)] and the dotted curve shows
the linear dispersion curve [k(cu)]. k(cu) can be derived
from the exciton-polariton dispersion equation. In the nu-
merical calculation, we use material parameters of the
bulk CuC1: AT = 3.202 eV, Al = 3.2079 eV, A
6.3722 eV, y = 0.03 meV, y = 0.5 meV, e~ = 5.59,
M = 2.3mo, N = (4/5. 41) A. , p, , = 0.083 e A., and

!
p, = 7 e A. We set the input pulse with width 300 fs
(FWHM) and center frequency 3.186 eV (biexciton TPR
resonance frequency). As we can see in Fig. 2, the non-
linear dispersion compensates polariton dispersion in the
frequency region of the input pulse at a certain intensity.
In this curve, the compensated region is about 3 meV
which is much larger than the biexciton linewidth, y
This is because k (cu) is produced by the integration
over the whole spectral region of the input pulse. We
use the value of y = 0.5 meV in the calculation to get
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FIG. 2. The real part of the linear polariton dispersion k(ni)
(dotted curve) and the total dispersion with the nonlinear
dispersion k(cu) + k L(co) (solid curve) for the input pulse
whose duration is 300 fs, the frequency is 3.186 eV (equal to
biexciton TPR). The nonlinear dispersion kN" (cu) compensate
polariton dispersion for the frequency region of the input pulse.
The input-pulse spectrum E(ru, 0) is illustrated in the left side
of the figure.

FIG. 3. (a) The calculated pulse shapes. The solid curve
represents the intensity profile derived by using the nonlinear
dispersion kN" (co). The dotted curve is derived using Eq. (2).
In these calculations we use material parameters of CuCl.
(b) The measured amplitude of field-cross correlations of the
transmitted linear-polarized pulses. The thickness of the sample
is 10 p, m. The pulse width and frequency of the input pulse
are 300 fs and 3.186 eV. The time delay zero point is the time
when the pulse peaks without the sample.

clear compensation for the spectral region which corre-
sponds to the 300 fs pulse. The dephasing constant of y
of 0.5 meV is much larger than the known value which
is measured by the frequency domain [20] and time do-
main [21—23] methods under the weak excitation condi-
tion. Such a large value, however, is consistent with the
value obtained from the analysis of nonlinear change in
the polariton dispersion measured with hyper Raman scat-
tering [16,17,24].

In the actual system, we have to take into account
the attenuation of the pulse. We calculate changes of
the pulse shape along z using Eq. (2), including phase-
mismatched terms and linear and nonlinear attenuation
effects. Figure 3(a) shows the results of the numerical
calculation of the pulse shape transmitted through the
10 p, m sample. The sample is discretized into 600 slices.
The dotted curves show the intensity profiles of the output
pulses calculated using Eq. (2), whereas the solid curves
are the profiles calculated using the nonlinear dispersion.
When the input pulse intensity is weak enough, the pulse
duration increases because of the strong group velocity
dispersion of polaritons near the exciton resonance. By
increasing the pulse intensity, the pulse duration becomes
shorter and the group velocity increases. Solid curves
clearly show distortion free propagation, while small
distortions remain in the dotted curves. These distortions
are caused by the nonlinear absorption and the non-phase-
matched terms.

We use a high purity single crystal of CuC1 with a
thickness of 10 p, m and keep them at 10 K. Frequency-
doubled mode-locked Ti:A120 i laser (pulse width is
300 fs) is tuned to the biexciton TPR (3.186 eV). The
biexciton state has I l symmetry and has no angular mo-
mentum. Thus the biexciton two-photon transition is al-

lowed for a single linearly polarized beam but forbidden
for a single circularly polarized beam. We perform the
experiments with a circularly polarized beam and a lin-
early polarized beam to clarify the biexciton TPR effect.
Shapes of the transmitted pulses are measured by the field
cross-correlation technique. We superimpose the trans-
mitted pulse beam on a reference pulse beam and measure
the amplitude of interference fringes as a function of de-
lay time of the reference pulse beam. A part of the input
pulse beam is used as the reference pulse beam. The am-
plitude of the fringes coincides with the pulse shape, as
long as the phase variation of the output pulse is less than
~ within the duration of the reference pulse. The nu-
merical calculations show that the maximum phase varia-
tion of the transmitted pulses is approximately 1.5 rad,
so we use this technique to determine pulse shapes. Fig-
ure 3(b) shows the experimental results for linearly po-
larized pulses. We observe strong distortion by GVD at
weak intensity. The observed pulse shape agrees with the
calculated curve. With increasing the intensity, we clearly
see the narrowing of the pulse duration and the increase
in the velocity. For circularly polarized pulses, no pulse
narrowing is observed.

We should show that the pulse intensity in our experi-
ment is in the low excitation region where the lowest-order
nonlinearity is dominant. In the renormalized dielectric
function [25,26] which contains the higher nonlinear ef-
fects, the expression of the susceptibility has a whole set
of odd order of I pmEI /ym(AT —A /2) at the biexciton
TPR (m = A /2). If the experimental condition satisfies
the inequality
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we can reduce the nonlinear change in the dielectric func-
tion into the lowest-order term g~ ~. The maximum peak
intensity (30 MW/cm ) is corresponding to the field ampli-
tude ~E~ = 1.8 X 10' (V/m), which satisfies the con-
dition of Eq. (8). We also estimate the biexciton density
by the amount of two-photon absorption. The density is
less than 10' cm, thus we can safely ignore the higher-
order processes such as biexciton-polariton scatterings and
biexciton-biexciton collisions. When the excitation pulse
duration is longer than biexciton lifetime (50 to 100 ps),
the accumulation of excitons occurs and the higher-order
effects become important. We use subpicosecond pulses,
so we can ignore the accumulation effects in our pulse
energy region.

As we can see in Fig. 3, the experimental results agree
with the curves calculated with the nonlinear dispersion
k (co) of Eq. (7). This implies that the attenuation
of the pulse and effects of phase-mismatched terms
are very smalI in our experiments. Actually the ratio
between the intensity of the input and the output pulse
is approximately 0.7 including reflection loss. The ratio
has little dependence on the intensity. We suppose that
the effective y relevant to the real part of g( ) (which
affects the dispersion curve) is larger than the effective

y for the imaginary part (which causes two-photon
absorptions). Similar discrepancy between the real and
imaginary parts of g~ has been seen in the experimental
results on nonlinear ellipsometry [27]. The large values
of y ranging from 0.2 to 0.4 meV are used to explain
the experimental data of the nonlinear shift of the hyper
Raman scattering lines. Nonlocality in the nonlinear
optical response caused by the finite translational mass of
biexcitons causes such discrepancy.

The increase in the group velocity is also caused by
a modification of exciton-polariton dispersion associated
with the exciton resonant terms. As we can see in Fig. 2
the high energy part of the dispersion curve is sensitive
to the exciton resonant terms, which lead to the reduction
of GVD. The observed increase in the group velocity is
larger than that of the calculation. We actually observe
a slight increase in the group velocity even for circularly
polarized pulses. Thus the nonresonant term, y~~~, which
we neglect in the calculation, reduces the group velocity.

In summary, we present a new scheme of distortion
free propagation of exciton polariton, and demonstrate it
experimentally in CuC1.
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