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Reentrant Melting in Laser Field Modulated Colloidal Suspensions
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We present results from a Monte Carlo simulation study of the phase diagram and the order of the
modulated liquid to crystal transition in laser field modulated colloids. We find that for low values of
P V„ the strength of the modulation potential, the transition is first order, but changes to a continuous
transition for high values of P V„ in agreement with the conclusions from the density functional theory
of laser induced freezing. However, we find in the simulation a novel reentrant laser induced melting
transition from the crystal to the modulated liquid phase with increasing P V„unlike the (mean field)
density functional phase diagram.

PACS numbers: 82.70.Dd, 64.70.Dv

In this Letter we present results from our recent Monte
Carlo (MC) simulation studies of laser field modulated
colloids which show a novel reentrant laser induced
melting transition from the crystalline to modulated liquid
phase.

Studies of laser field modulated colloids date back to
the pioneering work of Chowdhury, Ackerson, and Clark
[1], who demonstrated laser induced freezing (LIF) in a
two-dimensional (2D) suspension of strongly interacting
colloidal particles. They showed that the colloidal liquid
freezes into a 2D crystal with predominantly hexagonal
order, when subjected to a 1D modulation potential V,
(induced by a standing wave pattern of interfering laser
beams) with its wave vector q tuned to qp, the first
peak of the direct correlation function (DCF) c (q) of
the colloidal liquid. Chowdhury, Ackerson, and Clark
[1] also theoretically analyzed this phenomenon in terms
of a simple Landau-Alexander-McTague [2] theory and
concluded that the transition from the 1D modulated liquid
to the 2D (modulated) crystalline phase can be made
continuous for sufficiently large V, . Later studies of these
phenomena involving direct microscopic observations [3]
as well as MC simulations [4] confirmed the existence
of LIF, but their conclusions regarding the nature of the
transition between the modulated liquid and the crystal
were not definitive.

The question of the order of the LIF transition has
been studied recently using density functional theory
(DFT) [5,6]. In Ref. [6] it has been shown how the
modulated liquid ~ crystal transition can change from
first order to a continuous one via a tricritical point
with increasing V, . When the modulation wave vector is
tuned to qp, V, couples to the density (order parameter)
modes of the crystal belonging to a subset (g ) of
the set of smallest reciprocal lattice vectors (RLV's),
(g

' ). Symmetry considerations indicate that the order
parameters corresponding to (g

'
) can then be divided

into two classes: (1) those corresponding to (g I ), the
modulation wave vectors, with a value we denote by s I,

and (2) those corresponding to the rest, (g ) [= (g t"))—
(g(Il)], which we denote by sz. The key point is that
one can choose (g I ) in such a way that an integral
combination of vectors in (g I ) cannot be obtained from
an odd combination of vectors in (g ) [6]. Under this
condition [6] the Landau free energy expansion about the
modulated liquid Phase (with sI 4 0) in Powers of $z
has only even powers and the transition changes from first
order for low values of P V, (where the quartic coefficient
of the Landau free energy is negative) to a continuous one
for large values of PV, (where the quartic coefficient is
positive) via a tricritical point [P = (ktsT) ].

In the light of this work, careful and extensive simu-
lation studies of such systems to investigate the phase
diagram and the nature of the transition are of obvi-
ous interest, especially because the earlier MC simu-
lations did not focus on these issues. In this Letter
we report the results of such studies on a 2D poly-
ball system (diameter, 2R = 1.07 p, m) of concentration
nz = 1.81 X 10 /cm, subjected to an external potential

of the form U(r ) = —V, cos(qpx) with qp = 27'/( 2 a, )

[where a, = ( & nz) ' is the interparticle separation],
the smallest RLV of the crystalline phase, or equivalently
the position of the first peak of the liquid DCF. This
choice, leading to (g ) = ~&2(~1,0) and (g

(~ 2, ~
2 ), satisfies the symmetry condition stated

a, ~3/2
above [6]. The interaction between two polyballs sepa-
rated by a distance r is taken to be of the standard DLVO
(after Derjaguin, Landau, Verwey, and Overbeek) form
[7]

V(r) = (Z*e) exp(+R) exp( —tr r)
e 1+vR r

Here Z*e (Z' = 7800 as in [4]) is the effective surface
charge, e (= 78) is the effective dielectric constant of
the solvent, and ~ is the inverse of the Debye screening
length due to the counterions in the solvent [8]. The order
of the transition is analyzed using the finite size scaling
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behavior of Al = [(E )/(3(E ) ) —I/3] (where F is the
total potential energy of the system). It has been shown

[9] that Al shows distinctive finite size dependences
depending on the nature of the transition. In the case of
a first-order transition (see Ref. [9] for details), AL shows
a dip (Al '") at a temperature To

'" such that as L ~ ee

To
'" tends to To, the phase coexistence point, and AL'"

tends to a nontrivial value different from zero, with a
finite size correction varying as L where d is the spatial
dimensionality:

p2 E2 2

Ar
'" = — + O(kiiToL "). (1)

3 (2E E)2
Here F+ and E are the energies of the ordered and
the disordered phases, respectively. In the case of a
continuous transition, on the other hand, from finite
size scaling one can show [9] that AL'" goes to zero
as L ' as L ~ ~. Hence by looking at the L
dependence and the limiting (i.e., extrapolated) values of
AI, one is able to distinguish first-order and continuous
transitions even from finite sized MC simulations.

Our simulations were carried out on N = L particles

in a rectangular box with L / 2
= L~ = La,, so that the~3

formation of the hexagonal lattice (to which the system
is known to freeze when V, = 0) does not get frustrated.
Periodic boundary conditions (PBC's) were used in both
the directions. We fixed p V, at a given value and
scanned along the ~a, axis. For each ~a„ the simulations
were carried out for different system sizes (L = 2n, n =
3, 4, 5, 6, and 10). The starting configuration was a
triangular lattice with slight perturbation at each lattice
point. The configurations were then updated by means
of a standard Metropolis algorithm [10]. The cutoff of
the interaction potential was kept at the distance where
the DLVO potential falls to 0.001k~T. The energy
of interaction was computed using the minimum image
convention and the computation was speeded up by
constructing a Verlet neighbor list updated at regular
intervals (the interval depends on the point in the phase
diagram where the simulation is being carried out). The
size of the MC step was so chosen that the acceptance
ratio [10]was —0.40. We studied extensively the limiting
case V, = ~ whence the MC moves in the transverse

(x) direction are not allowed. This particular limit is
of interest because according to DFT [6] the transition
from the modulated liquid to solid must be continuous
for very large V, . The equilibration was judged by
monitoring (E), Al, and the specific heat CV [11]. After
equilibration, typically 10000 MC steps were carried
out for calculating average of interest. For p V, =
0 and pV, = ee we present, in addition to the bulk
equilibrium quantities like (E), Ar. , and Ct, preliminary
results for the Fourier components of density p(q )
using the definition p(q ) = (X; e''i'" ). Here () indicates
configuration averaging, q = (2' n, /L„2vrn~/LY), n

and n~ being integers, as allowed by the PBC, and the
particle coordinates are measured in the center of mass
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FIG. 1. Plots of Al. and Cv as functions of ~a, for (a)
P V, = 0 and (b) P V, = ~.

frame to take care of the center of mass drift during the
simulation. Note that q = (g ) corresponds to n, =
~n and n~ = 4-2n. We have computed p(q) only for
those q for which the (integral) values of n, and nY are
close to n and 2n, respectively. We define the numerical
value of the maximum in p(q) as the "order parameter"

p . We have also calculated (for specific cases) the single
particle density p(r ) by binning the x and Y coordinates
of the particles (with respect to the center of mass) into
a rectangular mesh and averaging over typically 10000
configurations.

First we discuss our results for the case p V, = 0
for which the freezing transition is known to be first
order. We find, as shown in Fig. 1(a), that Al. shows
a pronounced dip and Cy has a pronounced peak at
the same value of ~a„which we denote by ~L a, .
We obtain the transition point ~*a, (= 13.8 for pV, =
0), i.e. , by extrapolating the 1~1 data (which have a
weak L ' dependence) to L ~ ee. For pV, = 0, the
energies E for Ka, slightly larger and smaller than ~L a,
for the largest system size (L = 20) are different, but
the difference is so small that limI AL = 6 X 10 "
[cf. Eq. (1)]. Ignoring this small constant, the log-log plot
of Al'" vs L ', shown in Fig. 2(a), gives a best fitting
exponent of 2.05. This we take as an indication that the
transition is first order. This conclusion is also supported
by our data for the order parameter p for L = 10 and 20
shown in Fig. 3(a), which jump to zero. We find that
the jumps in p happen at ~a, values which are larger
than ~1 a„and much more strongly L dependent, but
extrapolating to the same ~*a, as L ~ ~.
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FIG. 2. Log-log plot of AL'" vs I for different external po-
tentials (a) with lines of slope 2.05 indicating first-order tran-
sitions and (b) with lines of slope 1.24 indicating continuous
transitions.
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clear from Fig. 4 that for low values of PV, (up to
P V, = 0.2) the transition takes place at higher ~a,
[lower (~ a, ) ] with increasing PV, . This is clearly the
phenomenon of LIF. For high values of PV„however,
the transition point bends back to lower values of ~a,

FIG. 3. p vs ~a, plot for (a) PV, = 0 and (b) V, = ~.

Next we consider the limiting case of P V, = ~. Here
also [cf. Fig. 1(b)] Al shows a pronounced dip and Cv
a pronounced peak at ~1 a„with limI ~La, =—~"a, =
8.9. The log-log plot of AI

'" vs I. ' shown in Fig. 2(b)
has the best fitting exponent of 1.24. This, together with
the negligible limiting value of Al'" (= 3 X 10 6, as
estimated using Eq. (1) from the F~ values for this case),
we take as evidence that the transition is continuous [12].
In support are the data for the order parameter p for
L = 10 and 20 in Fig. 3(b) which vanish continuously,
but again at a value of ~a, larger than ~1 a„presumably
due to a combination of finite size effects and possible
critical slowing down near the transition point [13].

We have carried out a similar scaling analysis of AL'"
for PV, = 0.05, 0.25, 0.3, and 0.5. The exponent is
found to be close to 2 for PU, = 0.05 and 0.25 and it
is close to 1.26 for PV, = 0.3 and 0.5. The values of
the exponent indicate that the transition is first order up
to P V, = 0.25 and continuous from PV, = 0.3 onwards
with a tricritical point lying in between PV, = 0.25
and 0.3. This, together with ~*a, values we have
obtained for other finite values of PV, up to PU, = 1,
gives us the phase diagram shown in Fig. 4. It is
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FIG. 4. The phase diagram in the [(~"a, ) ', P V, ] plane.
Filled squares denote first-order transition points and the open
circles denote the continuous transition points.
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FIG. 5. Contour plots of p(r) for (~*a,) ' = 0.7 indicating
(a) liquid (PV, = 0), (b) crystal (PV, = 0.2), and (c) modu-
lated liquid (PV, = 0.5) phases.
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[higher (~*a,) ], i.e., to larger interaction strength,
with increasing p V„eventually saturating around
(le*a,. )

' = 0.11 (for PV, = ~, (It*a,) ' = 0.112).
This saturation implies that for points very deep into the
crystal region [for (~"a, ) ' ~ 0.11], one will always get
a stable crystalline phase, no matter how large pV, is.
This feature is in agreement with the DFT and contrasts
with the behavior found in the Landau-type theories [6].

However, there are two novel aspects of the phase
diagram in Fig. 4 that did not show up in the DFT
analysis of Ref. [6]. First, for (It*a,) ' ) 0.072, as pV,
increases, one will get a laser induced melting (LIM)
transition Sec. ond, for 0.066 ( (~'a, . )

' ( 0.072, LIF
is followed by a LIM transition to a reentrant modulated
liquid phase with increasing pV, . Our results for the
single particle density p(r ) along the line (Is a, )
0.07 for PV, = 0.0, 0.2, and 0.5 on a 12 X 12 lattice
shown in Figs. 5(a) —5(c), indicate that for pV, = 0, the
phase is liquid, for pV, = 0.2, it is a triangular lattice,
and for pV, = 0.5 a modulated liquid phase, clearly
supporting reentrant phase transition.

In summary, our simulation studies are in agreement
with the conclusions of the DFT that the transition from
the modulated liquid phase to the crystal changes from
first order to continuous with increasing values of pV,
via a tricritical point. However, in contrast to the findings
in the DFT, novel features, namely, a LIM transition and
a reentrant modulated liquid phase are seen in the phase
diagram [14]. It is clearly of great interest to understand
the physical mechanisms behind these features. Likely to
be important are fluctuation effects beyond the mean field
theory of Ref. [6]; for, apart from the fluctuation effects
due to the fact that our system is 2D, as p V, increases, the
particle motion in directions transverse to the modulation
is restricted, leading to reduced effective dimensionality
and enhanced fluctuations [15]. In addition, the changes
in the liquid structure factor due to V, have not been
taken into account in the theory of Ref. [6], and may
also be important in high p V, region. These are also the
likely reasons why the location of the tricritical point in

Fig. 4 (p V, between 0.25 and 0.30) differs substantially
from the density functional prediction [6] (pV, = 0.1).
Our results clearly indicate that new experimental studies
of laser field modulated colloids look for the continuous
modulated liquid to crystal transition as well as LIM and
the reentrant liquid phase, and further theoretical studies
would be of great interest.
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