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Ginzburg-Landau Theory of Vortices in d-Wave Superconductors
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Ginzburg-Landau theory is used to study the properties of single vortices and of the Abrikosov vortex
lattice in a d, 2 —y2 superconductor. For a single vortex, the s-wave order parameter has the expected
four-lobe structure in a ring around the core and falls off like 1/r2 at large distances. The topological
structure of the s-wave order parameter consists of one counterrotating unit vortex, centered at the
core, surrounded by four symmetrically placed positive unit vortices. The Abrikosov lattice varies
continuously from triangular, through oblique, to square with increasing field and s-d mixing parameter
e . Comparison is made to recent neutron scattering data.

PACS numbers: 74.20.De, 74.60.Ec, 74.72.—h

Despite nearly a decade of intense experimental and
theoretical activity, the nature of the microscopic mecha-
nism for high T, superconductivity remains controversial.
Nevertheless, there has been considerable recent progress
in understanding the phenomenology of these materials.
For example, it seems clear that some sort of Cooper pair-
ing is required to explain various observations, and there
is mounting evidence for the existence of nodes with d-
wave symmetry in the energy gap at the Fermi surface
[1], which provides a strong incentive for studying the
phenomenology of superconductors with such gap struc-
tures. As in the somewhat analogous case of superfluid
He, these questions are most pressing for a superfluid

with a nonuniform condensate. Here we consider the be-
havior of a d-wave superconductor in a uniform magnetic
field. The resulting quantized vortices exhibit a novel
and complex structure, both individually and collectively
when they form a dense lattice, particularly because of
the presence of an induced s-wave component that would
be absent in a strictly uniform system. These effects are
likely to play a significant role in the transport properties
of high T, superconductors.

We have previously considered [2] a simple microscopic
model of d-wave superconductivity for electrons on a lat-
tice and used the Bogoliubov —de Gennes equations to cal-
culate the order parameter distribution for a single vortex.
The relevant Ginzburg-Landau (GL) free energy [3] served
to interpret our results. Conversely, our microscopic re-
sults demonstrated the value of this GL model. The GL
theory involves both the d-wave order parameter and an
induced s-wave order parameter which arises in inhomo-
geneous states through a mixed gradient coupling [3—5].

Experience with conventional (s-wave) superconductors
has demonstrated that virtually all of their phenomenologi-
cal properties can be derived from the appropriate GL the-
ory. The purpose of this paper is to develop the analogous
GL theory for a d&2 —y2 suPerconductor based on the in-
sights obtained from the microscopic model [2]. First, we
investigate the structure of a single vortex near H, ~(T).
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FIG. 1. Amplitude of the s-wave component along the x
axis (solid line) and along the diagonal I = y (dotted line)
normalized to the bulk value do. The parameters used are
y, = yq = y„,u, = 10lnzl, P&

——P3 = 0, and P4 ——0.5P2.
The inset shows schematically the positions of the s-wave
vortices and their relative windings.

Our main result is that the s-wave component of the order
parameter exhibits a nontrivial internal topological struc-
ture, shown in Fig. 1 ~ Second, we solve for the structure
of the vortex lattice close to H, z(T), by first minimizing
the quadratic part of the free energy using a simple varia-
tional wave function and then forming a periodic array of
vortices from linear combinations of these functions. The
results are compared to recent small angle neutron scatter-
ing (SANS) data [6].

The free energy of a d 2 —y2 superconductor may be
expressed in terms of the two order parameters s(r) and
d(r) with appropriate symmetries as follows [2,3]:

f = n, lsl' + n, ldl' + p, lsl' + p, ldl'

+ P3lsl ldl + P4(s* d + d* s )

+ y, lIIsl' + y„lIIdl'
+ y [(IIys)'(Iliad) —(II,s) (II d) + c.c.]. (1)
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Here II = —iV —e*A/ch, and d is assumed to be the
critical order parameter, i.e., we take n, = T —T, and

nd = T —Td with T, ( Td. The temperature deriva-
tives of a, and nd are equal by tetragonal symmetry
and have been arbitrarily set equal to 1. It is also as-
sumed that p~, p2, p3, p4, y„yd, and y, are all
positive [2]. The parameters y; are related to the ef-
fective masses in the usual way, with y; = R /2m;,
for i = s, d, v. For a stable d&2 —y2 suPerconductor one
expects T, to lie well below Td, and, when ldl &

0, the tendency for lsl to become nonzero is sup-
pressed even further by the p3 ls l l d l term. However,
as was shown numerically in Ref. [2] and analytically
in Ref. [7]t a substantial mixed gradient term (y ) oc-
curs in BCS-like mean field theories of d 2 —y2 suPer-
conductivity. This term implies that lsl & 0 whenever
lV'dl 4 0, even for T, « T T. he field equations for
the order parameters are obtained by varying the free en-

ergy (1) with respect to conjugate fields d* and s', giv-
ing

(yd11' + d)d + y, (11,' —11',) + 2pzldl'd + p31 l'd + 2p4s d* = 0,

(y, II + n, )s + y (II —II,)d + 2p)lsl s + p3ldl s + 2p4d s' = 0.

Equations (2) can be integrated numerically for boundary
conditions which generate a single vortex at the origin.
In doing this, we assume an extreme type-II limit, where
the coupling to the vector potential can be ignored while
considering the core structure of the isolated vortex line.

Ren, Xu, and Ting [7] have previously shown that for a
d-wave order parameter with the asymptotic form

d(r, 0) = doe',
where dn = Q —nd/2p2, the asymptotic form of the s-
wave order parameter is

s(r, t1) = gi(r)e " + gz(r)e'", (4)

max(s)/do —y /n, g„. (5)

Our numerical results confirm that the constant of pro-
portionality is of order unity. Note that the temperature
dependence of max(s) is (1 —T/Td) ~

where g ~ (r) and g2(r) fall off like 1/r for
r » sd —= Qyd/lnd l. Thus asymptotically the su-
perconductor is not in a pure d-wave state, but rather
in a state characterized by power law decay of the
s-wave component. Only at the length scale given by
the penetration depth is the pure d-wave state regained.
Furthermore, close to Td, gz(r) = —3gt(r), and therefore
the winding number far from the core is +3. This
result combined with the result that close to the core the
winding number is —1 [8] forces us to conclude that
four additional positive vortices must exist in s(r, O)
outside the core. We emphasize that this is a topological
result and thus not sensitive to small modifications of the
parameters. As is shown below, these vortices lie on the
~x and ~y axes. At lower temperatures a topological
transition to a state with s-wave winding number —1 is in
principle possible.

We have studied the dependence of the maximum of
the s-wave component on the GL parameters. Noting
that both the d-wave and s-wave components rise over
the same length scale given by $d allows us to give an
order of magnitude estimate for the magnitude of the s-
wave order parameter at the maximum,

In Fig. 1 we show the behavior of the s-wave amplitude
along the x axis and along the diagonal, as obtained by
numerical integration of Eqs. (2). Along the diagonals, s
has peaks whose amplitude is given by Eq. (5). Along ~x
and ~y, s has nodes corresponding to the four positive
vortices mentioned above. The region inside these nodes
corresponds to the core region with the domain structure
described in Ref. [2]. Outside these nodes, s(r, 0) is well
described by Eq. (4).

Next we turn to the problem of the structure of the
vortex lattice in the vicinity of the upper critical field
H, 2, where the amplitudes of the order parameters are
small and it is sufficient to consider the linearized GL
equations. It is easily seen that in the Landau gauge
(A = yBx) these linearized field equations are satisfied by
taking d(r) = e' ~d(x), s(r) = e'"~s(x). Then, exactly as
in the one component case [9], we are left with a one-
dimensional problem which can be stated as follows:

(9fp + nd)d + Us = F.d,
Ud + (Ap + n, )s = Fs,

where Ag = ho), (afa + 1/2) and U =
e„(Rcu,/2) (a af + aa) are expressed in terms of
the usual raising and lowering operators, which can
be written as a = [(x —xk)/l + l(B/Bx)]/~2 Here.
l = Qhc/e*B is the magnetic length, xq = klz, and
cu, = (e*B/mc). In writing Eqs. (6), we have assumed,
for simplicity, that md = I,' —= I, i.e., that yd = y„
and we have set e = y /y, = m'„/m*. By including
the right hand side of Eqs. (6) we are considering a
slightly more general problem: E = 0 corresponds to
the physical solution for B = H,.2(T), and solutions for
E ( 0 will be useful later when we consider the stability
of various vortex lattice structures.

In contrast to the one component case, the linearized
equations (6) have no obvious exact solutions. This is
due to the coupling term V whose origin traces back
to the mixed gradient term in the free energy (1). In
what follows we construct a simple variational solution,
which is likely to capture all the essential physics of the
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problem. To this end we define A — = Aq ~ V and

y — = d ~ s, in terms of which we can write the set of
equations (6) as

(
A+ + T —T* 5—T/2 p l (p+ 5

AT—/2 A +T —T" p ) (p-)'
where we have defined T* = (Td + T,)/2 and AT =
Td —T, . A nice feature of this representation is that
for AT = 0 the equations for p+ and p decouple,
each becoming a simple harmonic oscillator problem.
Motivated by this fact, we consider a variational solution
to the full problem in terms of normalized ground state
harmonic oscillator wave functions,

~( ) ( /I~)1/2 —o.'(x xk)'/2l' (7)

The variational parameters u.+ and cr are determined
by minimizing (E). If o.+ = o. cos6 and o.—= o. sin@,
this leads to

T —T* 1 t ~cue 1+
l (I + &v)x + (I &v)

AT 4 &AT

1 2x

2 1+x2

where x = tan6. The full minimization is governed by
the parameters e„and A = her, /AT. In the low field
limit, A (& 1, o.+ = o. = 1, while in the high field
Itmtt, A » 1, sr~ = [(I ~ e, )/(1 ~ e~)]' . It follows
that at least intermediate values of A are required for
appreciable effects from s-d mixing to occur. Otherwise
the s component effectively vanishes.

Solutions to Eq. (8) with (E) = 0 give the dependence
of the upper critical field H, 2 on the temperature. When-
ever a finite admixture of the s component is present, a
characteristic upward curvature is found near the critical
temperature in H, 2(T) [3,5]. Such curvature has been ob-
served experimentally in both La-Sr-Cu-0 and Y-Ba-Cu-
0 compounds [10].

Next we construct a vortex lattice. Consider a periodic
solution of the form

it is customary to describe this shape by the ratio R =
L, /LY = (l /~)q . R = 1 corresponds to the square,
while R = v 3 corresponds to the triangular vortex lattice.
The restriction to centered rectangular lattices is made
primarily for computational convenience. However, it is
compatible with recent experiments on YBa2Cu307 which
show evidence for an oblique vortex lattice with nearly
equal lattice constants [6].

At B = H, z(T) all solutions of the form (9) are
degenerate. It is the fourth order terms in the free energy
that lift this degeneracy below H, 2 and determine the
vortex lattice configuration. Minimizing the total free
energy yields

(f.)'
4(f4) 4

(10)

1.35

where ( . ) means integration over the volume of the
system, f2 and f4 stand for quadratic and quartic parts
of the free energy density (1), respectively, and P~ is the
generalization of the usual Abrikosov parameter [9].

We have studied the dependence of P~ on R in various
regions of parameter space. For values of e close to
0, P~(R) is minimized by R;„=~3, i.e., the triangular
lattice is stabilized. This is because, for e small, the
s component is suppressed and the usual one component
solution [9,11] is found. As e is increased, the minimum
of P~ moves toward smaller values of R;„(~3 and
an oblique vortex lattice is preferred. Finally, at some
value of e (which depends on other parameters) the
minimum of P~ reaches R,„=1, characteristic of the
square vortex lattice. Further increase of e has no effect
on the lattice structure which remains square. The typical
dependence of P& on R is displayed in Fig. 2.

It follows that in a d-wave superconductor one should
observe a general oblique vortex lattice, unless the ma-
terial is in one of the limiting regimes where e, is very
small or very large. Such an oblique lattice structure has,

Xd/. (&) = g c.e'""[V.'(x) —~. (x)], 1.30

where pk (x) are defined by (7) and k = qn (n integer),
which gives periodicity in y with period L~ = 2~/q.
Solution (9) will also be periodic in x provided that the
constants c, satisfy the condition c„+&= c„for some
integer N. In what follows we consider only the case
of N = 2 so that c~„=co and c2,+] = c~. The period
in the x direction is L = 2l q, and it also follows that
BL,L~ = 2(hc/e*) = 2@o, i.e., there are two fiux quanta
per unit cell. The resulting lattice may be thought of
as centered rectangular with two quanta per unit cell or,
equivalently, as an oblique lattice with lattice vectors of
equal length and one Aux quantum per unit cell. The
parameter q controls the shape of the vortex lattice, and
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FIG. 2. Abrikosov ratio P~ as a function of the lattice
geometry factor R = L /LY for different values of e and
T, = 0 5Td, T = 0.75Td, p~ = pq. = p3 = p4 = 1, and B =
0.8H, 2. The inset shows the dependence of the minimum R;„
on the parameter e„for different values of P4.
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in fact, been recently observed by SANS on YBa2Cu307
single crystals in strong magnetic fields parallel to the
c axis by Keimer et al. [6]. These authors reported an

oblique lattice structure with nearly equal lattice constants
and an angle of @ = 73' between primitive vectors. Our
phenomenological theory is consistent with any angle P
in the interval [60,90 ], including that found experimen-
tally. We display an example of a general oblique vortex
lattice obtained by explicitly evaluating amplitudes of s
and d components of the order parameter from Eqs. (9) in

Fig. 3. A comparison of Figs. 3(a) and 3(b) reveals that
the nontrivial nodal structure of the s component persists
even in this high field regime.

Keimer et al. further report that one principal axis
of the oblique unit cell is always found to coincide

with the (110) or (110) directions of the YBa2Cu307
crystal. This is at variance with our results, since we
find that one lattice vector of the larger rectangular cell
is oriented along (100) or (010), even in the presence
of a small orthorhombic distortion. However, we find
that the energy cost of rotating the vortex lattice is small
compared to the energy needed to deform the lattice. It is
thus possible that (110) twin boundaries, where the order
parameter is weakened, bind lines of vortices and hence
orient one of the oblique lattice vectors along (110) as is
found experimentally.

In closing, we note that the most striking feature of
our calculations, the rich topological structure of the s-
wave order parameter, might be observed experimentally
by scanning Josephson tunneling from an s-wave tip into
a truly tetragonal d&2 —y2 superconductor.
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(a) d-wave

(b) s-wave

FIG. 3. Contour plot of the amplitudes of (a) d component
and (b) s component of the order parameter. GL parameters
are the same as in Fig. 2 with e = 0.45, resulting in an
oblique vortex lattice with R;„=1.29 and the angle between
primitive vectors P = 76 . The lightest regions correspond to
the largest amplitudes.
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