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Quantum Shell Effect on Dissociation Energies, Shapes, and Thermal Properties of Metallic
Clusters from the Random Matrix Model
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We show that a conceptually simple random matrix model of metallic clusters yields dissociation
energies which are in very good agreement with both experimental data and results of ab initio
calculations. For open shell clusters this model predicts a new phenomenon: a phase transition
associated with the loss of spherical symmetry.
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Recent progress of cluster theory mainly relies on the
molecular approach, when exact quantum chemical meth-
ods [1] or the local density approximation for metallic
clusters [2] are employed in ab initio calculations. A
great deal of attention has been paid to the allowance of
possible spontaneous three-axial deformation [3] of clus-
ters, which usually implies cumbersome numerical work.
But do we really need to pursue the ab initio description
for the increasing cluster size?

In this Letter we show that the results of ab initio
calculations of the alkali metal clusters can be reproduced
in the framework of a conceptually simple qualitative
theory, which considers the clusters as disordered pieces
of solids. This theory also gives very good agreement
with the experimental data [4] and can be easily extended
to large species.

The purpose of such a theory is not only to get a deeper
insight into the physics underlying the behavior of metal-
lic clusters but also to predict new phenomena. In particu-
lar, we demonstrate the link between the temperature and
the shapes of clusters and show that small metallic clusters
experience a high-order phase transition [5] where shape
plays the role of the order parameter.

In the first approximation our theory treats metallic
clusters as a Fermi gas of electrons moving in an effective
spherically symmetric potential well: The one-electron
states resulting from the quantization of this motion are
populated according to the Fermi distribution at zero
temperature. At the next step we assume that other
interactions such as thermal perturbation of the cluster
density, spontaneous deformation of its shape, as well as
the scattering of the electrons at ionic cores of individual
atoms, etc. , have qualitatively the same effect on the
unperturbed one-electron spectrum: All together they just
lead to a random coupling [6] of the states. In other
words, we assume that all these phenomena contribute
additively to the mean square interaction (V ), which is
the only parameter that governs the transformation of the
one-electron spectra occupied by cold and noninteracting
electrons. Vv"e consider this perturbation to all orders with
the help of random matrix theory.

g(E) dE, g(E) dE (3)

hold, respectively, for the numbers N+ and N of valence
electrons with the parallel and antiparallel spins and
for the corresponding energies e+ and e of the last
states occupied by the electrons with given spins. For
a cluster with an even number N of valence electrons we
have N~ = N = N/2, whereas for an odd N we have
N+ = N + 1 = (N + 1)/2. The net energy of valence
electrons reads

Eg(E) dE. (4)

By solving Eq. (2) numerically for an unperturbed energy
spectrum E„~, d„I, and a given size of the perturbation
(V ), we find the nonlinear complex-valued renormaliza-
tion E(E) of the energy scale and calculate the correspon-
dent density of states Eq. (1). At the next step, for given
N we find from Eq. (3) the integration limits e+ and e
and finally from Eq. (4) we determine the energy of the
perturbed cluster.

Our approach relies on the transformation rule for an

arbitrary quantum system perturbed by a random matrix,
which has been discussed in details in Ref. [7]. Briefiy
the essence of the rule is the following: Perturbation
of a quantum system by a random matrix results in a
transformation of the density of states. The new ensemble
averaged density of states reads

g(E) = —Im ~~ ", (1)
1 ~ JnI

E(E) —E„i —i0 '

where E„I are the energies and d„~ = 2I + 1 are the or-
bital degeneracies of the unperturbed levels. The contin-
uous (from —~ to ~) solution E(E) of the transcendental
algebraic equation

V dE=E+P (2)E —E„I —i0

gives a complex-valued renormalization of energies E.
We assume that the random perturbation does not

involve spins of the electrons. Therefore the equations
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The dimensionless parameter v = (V2)g governs the
reconstruction of the state density g(E). Here g is a
typical density of one-electron states. By taking g =
2mr, N ~ /36 = 7r (E2, —E~, ) ' we arrive at v
(V )4r, m N ~ /9R, where m is electron mass and r,
is Wigner-Seitz radius. Since (V ) represents the size
of random perturbation we can refer to v as a "disor-
der parameter. " It consists at least of three parts v

v„,«+ v, h + g . The first part allows for the non-
separable electron-electron and electron-ion interactions
which have not been taken into account in the Fermi-gas
model. The second contribution comes from the scatter-
ing at phonons, and hence it depends on the temperature
v, h

= A~T. The third term g is a free parameter pro-
portional to a typical deformation ((BR/R) ).

We estimate vst vggatt + v, h by noting that the
electronic relaxation time ~ in metals originates from
the same phenomena as v„,«and v,h. Indeed, the
relaxation rate I/2' r equals the mean squared interaction
(V )„—= v„/g multiplied by the density of states with a
fixed spin g(eF) = (9vr/4)' 2Nmrs/37r6 at the Fermi
energy eF = (9~/4) ~ h /2mrs. Hence we arrive at
v„= (4N/9')' mrs/36 r [8].

The third term has the structure
C((6R/R) )N'~3. We concentrate here only on the
size of g, and therefore we neither specify the numerical
factor C nor dictate the mode of the deformation. In
our consideration g plays the same role as the order
parameter in the second order phase transition theory: It
appears if a spontaneous deformation yields a gain of the
cluster energy.

The energy Eq. (4) as a function of the cluster size can
be separated [9] into two parts. One part is a smooth
function on N which reveals macroscopic properties
of the metal. The other part is the so called shell
correction 'E,, which allows for microscopic quantum
properties of the clusters. The smooth part has the
general structure 'E, = a N —a.,N2~ + acN '~ +
b~ v N + b, v N . Here a~N is the volume energy
of N atoms. The surface contribution a,N represents
the energy of bounds breaking needed for extraction
of atoms from the volume at the surface. The term
acN '~3 gives the Coulomb energy of ionic species [4].

ince v —N'/', the terms b v N and b, v N'
give the linear in v corrections of a N and a,N /,
respectively. As a guess for the parameters a and a,
we take the experimental values [4] that have been found
at finite temperatures. We determine parameters b and
b, by fitting the calculated dissociation energies to the
experimental curves. In the same time we specify the
parameters a and a, for ions at T = 0 and with a better
allowance of shell corrections.

In order to find the shell corrections we take the
(339)

spectrum F.„I of the spherically symmetric closed-
shell cluster ion M339 calculated in the local density

approximation for different alkali metals M = Li, Na, K,
and construct the unperturbed spectra of smaller clusters

by the scaling E„I = [339/(N + l)]2~3E„I . We
(++i) .

substitute E„& into Eq. (2) and obtain the total energy
Eq. (4). This model properly takes into account only the
shell corrections since they are sensitive to the mutual
positions of neighboring levels near eF that do roughly
obey the scaling law. It fails in reproducing the smooth
dependence which is not scale invariant. We therefore
have to extract only 'E„ from the calculated total energy
Eq. (4) by subtracting the smooth part.

But how can we identify the smooth part? A remark-
able property of the shell corrections allows us to do it:
They must vanish for large v . We therefore calculate
'E(v, N) and identify nine [10] parameters np, n~, n2, pp,
p~, p2, yp, y~, and y2 that for large v make the difference

E„=X(~', N) —(y, + y, v' + y, v') N'"
—(Pp + Piv + P2u )N i

—(np + niv + n2v )N

vanishing: X„~0. Thus constructed Eq. (5) represents
therefore only the shell corrections, and we arrive at

'E =a N —a.,N~ +acN
+b DN +b, vN' +X . (6)

In Fig. 1 we show the perturbation-dependent part of
Eq. (6) for Li&+&+, Na~+&+, and K~+& clusters as a
function of cluster size for different parameters v . On
the top of smooth dependences one sees the transforma-
tion of shell corrections for the increasing perturbation:
The long-period sawtooth oscillations associated with the
spherical degeneracy of electronic orbits at small v turn
into even-odd alternations [11] resulting from the resid-
ual twofold spin degeneracy. The larger the perturba-
tion the stronger the even-odd alternations, which agrees
with the results of Ref. [3]. Near the magic numbers
N = 2, 8, 20, ..., an increase of v2 leads to an increase
of energy. For other sizes we see an interplay between
dying shell corrections and increasing smooth parts of the
clusters energies: The total energy first decreases with
an increase of v, then it reaches a minimum value for
v vmjn p and then starts to rise.

We find the disorder parameter v j„which minimizes
the energy Eq. (6) for each N If v~;„exceed.s vzt, the
free parameter may take a positive value 77: vmj~

vst, otherwise the minimum energy corresponds to
0. It implies that for a given starting perturbation v„ the
spherical clusters for which v„) v;„remain spherical.
In the opposite case v„( v;„ the cluster spontaneously
changes its shape and decreases its energy to the minimum
value.

For a fixed v„ the energies of clusters are given by the
bottom envelope 'Eb, (v„,N) of the family of curves in
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FIG. 1. Shell corrections for (a) Li~+~, (b) Na&+1+, and (c)
K&+ ~+ clusters for different sizes of the disorder parameter v .
(In order to magnify the shell corrections a linear dependence
has been subtracted. ) The bottom envelope Xb, (N) corre-
sponds to different v and serves for the determination of the
dissociation energies.

Fig. 1 with the perturbations v ) v„. The increments

L)(v„,N) = XI„(v„,N —1) —2'b, (v„,N) (7)

yield the corresponding dissociation energies. In Fig. 2
we depict these dissociation energies for Li~+]+, Na~+ ~+

and K~+~, along with the experimental data and results
of the ab initio calculations of three-axial deformed Na~
clusters. One can see that the calculated dependences are
in very good agreement with the experiments.

Parameter v„depends on the temperature via the part
v, h

= AtvT. Hence for v„) v;„ the energy Eq. (6)
2 2 2

also depends on T. In the opposite case of v„( v~;„
the electronic energy takes the minimum value and does
not feel any temperature variations, since the change
of g compensates for any small change of A~T. In
chemical terms it implies the existence of plural isomeric
forms [12] mutually accessible in the configuration space
of the clusters. We therefore determine the electronic
contribution to the cluster heat capacity as

8 X'(vz, , N)
c(N) = O(v„—v;„) '2 Atv, (8)

~vst

FIG. 2. The dissociation energies of cluster ions as a func-
tion of size calculated with the help of Eq. (7): (a) lithium
a, = 1.27 eV, a, = 0.2 eV, b, = —6.6 X 10 ~ eV/K, b, =
2.6 X 10 eV/K, v„= 0.039 [T —(700 K) (27/N)'t ];
(b) sodium a„= 0.96 eV, a, = 0.4 eV, b, =
—2.2 X 10 5 eV/T, b, = 8.7 X 10 eV/T, v2, = 0.016
[T —(650 K) (36/N)'7 ]; and (c) potassium a„= 0.87 eV,
a, = 0.9 eV, b„= —1.3 X 10 5 eV/T, b, = 6.5 X
10 ~ eV/T, v„= 0.01 [T —(450 K) (21/N)'t3]. The
experimental data of Ref. [4] and ab initio calculations of
Ref. [3] (shifted in energy) are given for comparison.

where 0'(x) is the step function. Note that variation of
the Fermi distribution with temperature gives the main
contribution to the bulk heat capacities of metals. For
small clusters the Fermi liquid remains cold or, in other
words, the small clusters remain in their ground electronic
terms. The contribution Eq. (8) is just a correction to the
dominating vibrational heat capacity, and it never reaches
the Dulong-Petit limit c(N) = 3N.

In Fig. 3(a) we show the heat capacities c(N) of
Natv+I+ clusters calculated with the help of Eq. (8) for
low, high, and moderate temperatures. The heat capacities
of Li~+~+, and K~+~+ have similar structures. One can
clearly see that at low temperatures only the clusters
of the sizes close to the magic numbers have c(N) 4
0. With the increase of the temperatures the intervals
of nonzero c(N) become larger. For high temperatures
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FIG. 3. (a) Electronic contribution to the heat capacity for
Na~~~+ clusters at T = 0 (dashed line), at TN't3 = 4250 K
(solid line), at TN't = 7100 K (dash-dotted line), and at
T ~ ~ (dotted line). The temperature, however, must remain
smaller than the gap between the electronic levels. (b) Critical
temperatures for Li~+ ~+ (dash-dotted line), Na~+ ~+ (dotted
line), and K~+~+ (dashed line) cluster ions as a function of the
cluster size. The "noise" comes from the crude temperature
grid. Dependence of Li30 energy on the temperature (solid
line) and on the scaled perturbation v2/A30 (dashed line) is in
the inset.

all clusters have nonzero electronic contributions to the
heat capacities. The appearance of c(N) at a certain
temperature implies a high-order phase transition.

For different sizes the phase transitions occur at dif-
ferent temperatures. In Fig. 3(b) we present the criti-
cal temperatures of the phase transitions T, = (v
v„,«)/A~ for Li~+~+, Natv+t+, and K~+t+ clusters.
The maximum T, correspond to the clusters with ap-
proximately half-occupied electronic orbitals which also
have the maximum deformation at lower temperatures.
For example, the very last phase transitions occur for
W —10—13 at v,„—0.09 for I i, at v„—0.06 for Na,
and at v„—0.05 for K. When we neglect v, gtf it
roughly corresponds to the temperatures of 2500, 3200,
and 1500 K, respectively. At the experimental tempera-
tures of Ref. [4] the parameter ri for these cluster sizes
amounts to 0.05, 0.04, and 0.035, respectively.

We conclude by summarizing the starting points and
the main results of the paper. We take a spherical cluster
and calculate with the help of random matrix theory the
effect of a generic perturbation on the total energy of the
cluster. We assume that this perturbation originates from
the variation of the cluster shape and from the thermal
motion of the cluster atoms that destroy the spherical
symmetry and make the quantum motion nonseparable.
We And the minimum energies and corresponding values

of the perturbation that depend on the cluster size. If
for a given temperature and a given cluster size the
thermal part of the perturbation cannot ensure the energy
minimization, the intended difference comes from the
spontaneous distortion of the cluster shape. We compare
with the experiment the dissociation energies of the
clusters calculated with the allowance of this generic
spontaneous deformation and find very good agreement.
For each cluster size we also find the critical temperature
that corresponds to the minimum energy. Below this
temperature the cluster is deformed and its electronic
energy is minimum. Above it the cluster acquires the
spherical shape and the energy starts to depend on the
temperature, which implies a phase transition. The critical
temperatures of the phase transition are zero for the
closed-shell clusters and maximum for the clusters with
nearly half-occupied outer shells.

*Also at Moscow Institute of Physics and Technology,
Dolgoprudny, Moscow, Russia.
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