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Exact Nonequilibrium dc Shot Noise in Luttinger Liquids and Fractional Quantum Hall Devices
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A point contact in a Luttinger liquid couples left- and right-moving channels, producing shot noise.
We calculate exactly the dc shot noise at zero temperature in the out-of-equilibrium steady state where
current is Aowing. Integrability ensures the existence of a quasiparticle basis where scattering is "one
by one" off the point contact, enabling us to generalize the Landauer approach to shot noise to this
interacting model. Experiments in a fractional quantum Hall effect device should test our results,
providing a clear signal of the fractional charge of the Laughlin quasiparticles.

PACS numbers: 73.40.Hm

The Luttinger model, describing the low-energy excita-
tions of an interacting one-dimensional (1D) fermion gas,
is one of the simplest non-Fermi-liquid metals. Experi-
mental observation of this non-Fermi state in 1D quan-
tum wires is difficult since disorder tends to localize these
excitations. However, this theory has been proposed to
describe the edge states in fractional quantum Hall effect
devices [1]. Tunneling through a point contact in a Lut-
tinger liquid is a practically ideal situation for making
contact between experiment and theory [2—4]. Very clean
measurements of electronic transport properties through
point contacts in quantum Hall devices have been per-
formed [5], while there are powerful constraints on the
theory because the model is integrable [6]. One can com-
pute the current and conductance through the point con-
tact exactly, even when the system is out of equilibrium
[4,7,8]. The experimentally measured [5] linear-response
conductance in such a device agrees well with the exact
theoretical prediction [2—4].

The tunneling current and conductance are "spectro-
scopic" probes of the non-Fermi-liquid state in the leads.
These, however, are not the only transport properties of
interest. The current shot noise resulting from the point
contact provides another signal of the non-Fermi-liquid
state. Here we compute the zero-temperature dc shot
noise exactly. This is the first exact computation of noise
in a model with interacting electrons.

For weak backscattering, Laughlin quasiparticles hop
from one edge to the other at the point contact. For
strong backscattering, on the other hand, current transport
is caused by electrons. In both limits the tunneling events
happen independently, so the shot noise is proportional to
the charge of the carriers providing transport. The weak-
backscattering limit is thus a direct signal of the fractional
charge of the Laughlin quasiparticles in the Hall device [9].
Our nonperturbative results give the noise for any amount
of backscattering. Moreover, we find a simple expression
of the noise in terms of the current and conductance.

The shot noise is a function of the (driving) "source-
drain" voltage V and T@, the scaled point contact inter-
action strength. Our approach uses the exact bulk and

impurity S matrices [6,10] of the Luttinger model. The
bulk 5 matrix describes the scattering of quasiparticles
off each other away from the point contact. Knowing
it allows us to find the density of these quasiparticles in
the Fermi sea at any voltage. The impurity 5 matrix el-
ements give the probability for tunneling events, which
correspond to the scattering of the quasiparticles off the
point contact. We find the zero-temperature dc noise us-
ing a Landauer-type approach that is familiar from studies
of transport of free electrons [11—13]; the result involves
the tunneling probabilities and the quasiparticle density.
It is exact in this integrable system because the quasi-
particles are transported "one by one. " This means that
the scattering of a current of quasiparticles off the point
contact can be described by the product of one-particle 5
matrices, even though the quasiparticles interact.

The left- and right-moving channels of the Luttinger
model are described by left- and right-moving bosons
P» and PR defined on a space —l ~ x ( l [14]. The
coupling constant of the fermion model is parametrized
by v, which is the filling fraction of the Hall device when
1/v is an odd integer. In the absence of the point contact,
the Hamiltonian is of Tomonaga form

Hp = »I j» + jR)

quadratic in the two individually conserved U(1) currents,
j» = —(I/4')(B, + d )@» and jR =(I/4~)(il, —
il, )PR. These currents are the charge densities. For

t
example, eQ» = e f t dxj» is the total charge of the
left-moving channel. An applied voltage V imposes a
chemical potential difference for the injected left- and
right-moving charge carriers. This results in a term
—AQeV/2 in the Hamiltonian, where AQ =— Q» —Q~.

A point-contact interaction coupling the right and left
channels at x = 0 results in backscattering, which in the
fractional quantum Hall effect (FQHE) edge state model
corresponds to tunneling of Laughlin quasiparticles. The
resulting Hamiltonian includes the term [2]

0, = ~cos[y, (x = 0) —@,(x = 0)].
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Other allowed terms are irrelevant for v ) 1/4 [2]; our
analysis holds for any v as long as there is only a single
relevant operator in H~. We rewrite the model in terms
of two left-moving bosons [15],

@"(x + t) —= (I/V2) [pt. (x, t) ~ pR( —x, t)],

where the even boson @' and the odd boson P' have
the plus and minus sign, respectively. The even and odd
Hamiltonians are decoupled: H~ involves only the odd
boson, while in Ho the jI, jz are replaced with the j', j',
where j' (x + t) = (I/~2) [j t.(x, t) ~ jR( —x, t)]. The
even and odd charges are thus related to the charges of
the original left- and right-moving edges by AQ = Qt. —
QR = ~2Q' and Qt. + QR = ~2Q'. Therefore, Q' is
the total charge on both edges, and is conserved even in
the presence of the interaction. The backscattering current
thus depends only on the odd boson theory.

Describing the model in terms of quasiparticles allows
us to calculate exact transport properties. These quasi-
particles span the Hilbert space of the left-moving odd
boson; they are the excitations above the "Fermi sea" at
zero voltage. Because the odd boson theory is integrable
[6], these quasiparticles have very special properties. The
infinite number of conserved quantities which commute
with the Hamiltonian in an integrable model allows one to
find the exact S matrix in a basis of quasiparticles where
the scattering is one by one. These results are already
known [6,10,16] for the odd boson Hamiltonian (1) and
(2). For any v, the spectrum contains a kink (+) and an
antikink (—). These carry (odd) charges Q' = I/~2 and
—I/~2, respectively. Chargeless "breather" states occur
for v ( 1/2 but do not affect the zero-temperature analy-
sis below. We parametrize the energy and momentum of
these massless left-moving quasiparticles in terms of the
rapidity 0 defined by E = pvF = Me~—/2, where M is
an arbitrary scale which cancels out of physical quantities.

When a positive voltage is turned on, it becomes
energetically favorable for positively charged particles
(the kinks) to fill the sea. If they did not interact, the
kinks (no antikinks) would fill all momentum states with
vF p ( eV/2 at zero temperature. The interaction shifts
the position of the Fermi level and changes the density of
quasiparticles. In [4,7] it was shown how to find these
exactly, following techniques given, for example, in [17].
We define the density p (0) so that p(0)d 0 is the number
of kinks per unit length with rapidities between 0 and
0 + dO. The shift of the Fermi level is given by the
quantity A, such that p(0) = 0 for 0 ) A. Then

K(s) —=
27' I (s/[2i(1 —v)])

v I'(vs/[2i(1 —v)])I (1/2 —is/2)
15 —= —ln(1 —v)—
2

lnv.
2(1 —v)

As required, p(0) = 0 for 0 ) A, because K is analytic
everywhere in the upper half plane (including s = i~).

Without the backscattering interaction, the odd charge
is conserved (B,AQ = 0). Because there are no antikinks
at zero temperature, all the current arises from the kinks
moving to the left at the Fermi velocity:

A 2

d0 p(0) = evF p(0) = v —V . (6)
h

Ip(V) = evF

IS+ —(0 —0a) I + exp[2(I v) (0 0B)/v]

and lS++l = 1 —lS+ l
. A simple kinetic equation

then gives [4,7], when specialized to T = 0,

Igf(V, TR) = evF—d0 p(0) lS+ (0 —0ti)l . (8)

The differential conductance is Gd'ff &&I. Using the
explicit expressions for p and lS+ l, one finds power se-
ries expressions for I(V, TR) = Ip(V) + IR(V, TR); they
are

The backscattering current IR(V) is the rate at which
the charge of the left-moving edge is depleted due to
backscattering off the impurity. This decreases the total
current I = Ip + IR By sym. metry, B,Qt = B, QR, —so
IR = B,[(e /2)A Q] = B,[(e/~2)Q']. In the even or odd
basis, tunneling corresponds to the violation of odd charge
conservation at the contact. In the quasiparticle basis, this
corresponds (at T = 0) to a kink scattering off the contact
into an antikink.

At T = 0, both the backscattering current and the dc
shot noise can be written entirely in terms of the tunneling
probability and the density of kinks only. The impurity S
matrix element S;I,(p/TR) describes a single quasiparticle
of type j and momentum p scattering elastically off
the point contact into a quasiparticle of type k. Here
Tz ~ A'/~' '~ is the crossover scale introduced by the
interaction; the precise relation is given in [7].

We define TB = Me '/2 so that the impurity S matrix
elements are functions of 0 —0~. These were derived
exactly in [6]; the tunneling probability is given by

M K(—s)IC(l )
p'Ls) = e"

2/hVF s l
(4)

e V
I(V, T.) =

h

~
2n(v —i)—

kT )

A eV ~(0)
M I~.(i)

'

where p (s) is the Fourier transform of p (0), and

oo y 2n(1/v —1)
e V

1(V, TR) = g a„(1/v)
n &=(TR)

(10)
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because f is either 0 or 1, (f ) = (f) [13]. We replace
the sum with an integral over momenta, obtaining

A

where

de p(O) iS (O —O, )i'(I)=e vF

~ [1 —15'+-(~ —&.) I'] (12)

This form of the dc shot noise is formally the same as for
noninteracting electrons [11—13], but here the density of
states p(0) given by (5) is nontrivial.

Since we have explicit expressions for iS+ i and p,
power series expressions for the noise analogous to (9)
and (10) can be found directly from (12). This, however,
is not necessary, because this expression can be related
directly to the current. The specific form (7) of the
transmission amplitude means that we can write

8 5
15+ I'(1 —15+ I') =

2 1 —v rlOg

Since neither p nor A depends on 0~, we can pull the Dg,
out of the integral. Using the expressions (6) and (g) for
I(V, T~) yields

ve
Tp&T, I(V, Tg) . (14)21 —v

This expression is a nonequilibrium analog of the
fiuctuation-dissipation theorem for a Luttinger liquid at
zero temperature. Since I(V, Ta)/V is a function of only
V/Tp, we find another form of this relation:

(I)=—

ve
& 1 ve

2(1 —v) V 2(1 —v)
(I') =—

(15)

The noise for v = 1/3 is plotted in Fig. 1. Remarkably,
due to the simple form of (15), the extrema of (I )/Tq
and Gd' ff occur at the same value of Tz/V It is certainly.
conceivable that (14) and (15) hold for other models, be-
cause they are a consequence of the simple identity (13).
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FIG. 1. The exact dc noise (I )/V at v = 1/3 as a function
of backscattering and driving voltage Tz/V

~7r I (n v)
2I (n)I (3/2 + N(v —1))

'

2~sr I (1/[2(1 —v)])
r( /[2( —1)])

The expansion (9) is appropriate for Tze ~ eV, while
(10) is appropriate for Tze ) e V; notice the strong
barrier weak —weak barrier duality [7].

Finding the shot noise requires a more detailed analysis.
We show that arguments given in [13] for the free-
electron case can be generalized directly to our interacting
quasiparticles due to the constraints of integrability. To
make the calculation of the noise precise, we first examine
the quantum-mechanical current operator j (t), which
includes the current with its fluctuations. The system is
not in equilibrium because current is fiowing, but it is in
a steady state, so the current I = ( j(t)) does not depend
on time. The current fiuctuations in frequency space are
characterized by the correlator

1
C(tu) = — dt e' '([ j(t), j(0)]). (11)

2
We will focus on the noise at zero frequency (the dc
limit), which we denote by (I ) = C(0).

In our quasiparticle approach, the current is thought
of as a series of individual quasiparticles. Since the
model is interacting, the quasiparticles are correlated;
but at zero temperature, every kink state with rapidity
(parametrizing momentum) less than A is filled, and the
remaining kink states, as well as all antikink states, are
empty. Thus without the point contact there is no noise
in this steady state. (Even with the impurity there is
no noise in the even current, only in the odd current. )
When the backscattering is included, shot noise occurs,
because there are two possible outcomes when a given
quasiparticle hits the impurity. We can describe the
dc shot noise from a quasiparticle approach, because
the scattering off the point contact is elastic and one
by one. As we discussed above, when a left mover
backscatters into a right mover, in the even or odd basis
this corresponds to an odd-boson kink scattering into an
antikink. Thus as we turn on the interaction (and the
voltage in order to generate a population of kinks), the
impurity will scatter some of these into antikinks. The
bath of kinks (the battery) is large, so it is not depleted by
the scattering.

Consider a single kink of momentum p, and define

f = 1 if this kink turns into an antikink when it scatters
off the impurity, and f = 0 if it scatters into a kink.
By definition of the impurity 5 matrix elements, the
average over many events is (f) = iS+ (p/Tp)i In.
the quasiparticle approach, the noise is then proportional
to the fluctuation of f,

' g((f —f)') = ' g((f') —(f)'),
where the sum is over all kink states which hit the point
contact per unit time. The crucial point to notice is that
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However, the interactions between the quasiparticles pre-
vent any naive application of this formalism outside zero
temperature.

We can compare these exact equations with known
results in the limits of weak (~5+ ~

small) and
strong (~S+ ~

near 1) backscattering. In the weak-
backscattering limit, the events seldom happen and thus
should be uncorrelated. Thus the shot noise should obey
[9], the formula for noninteracting particles (se, e.g. ,

[11—13])

T~ small;

the v appears because the original Luttinger fermions (the
Laughlin quasiparticles in the FQHE edge realization)
being scattered have charge ve. Inserting the small-

Tii expansion from (9) into (14), one easily verifies
this. Measuring the noise, therefore, gives a direct
measurement of the fractional charge [9]. In the strong-
backscattering limit, one can check that the leading
irrelevant operator contributing to the current corresponds
to the tunneling of quasiparticles of charge e. In the
FQHE, this is the tunneling of physical electrons between
two separate systems (in the strong-backscattering limit
the point contact splits the system in two). Thus

(I ) = eI Tii large,

which is easily verified using the large-Tii expansion (10).
We have seen that integrability permits the exact calcu-

lation of nonequilibrium transport properties through (in-
teracting) point contacts in a Luttinger liquid, generalizing
notions of ballistic transport used previously only for non-
interacting electrons. It would be very interesting to com-
pare our exact findings with future experiments on shot
noise in quantum Hall devices, identifying the fractional
charge of the quasiparticles experimentally. It would also
be most interesting to extend these results to nonzero fre-
quency co in order to check the recent perturbative result
that the noise has a singularity in ~ [18]. This, how-
ever, might require a more complicated formalism based
on form factors.
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