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Model of the Kinetics of Polymorphous Crystallization
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We propose a phase-field model for the kinetics of isothermal crystallization of an amorphous solid
at a concentration nearly equal to the equilibrium crystal stochiornetry. The model utilizes two coupled
fields: a nonconserved ordering vector field which describes the local lattice structure and a conserved
nonordering scalar field describing the local atomic composition. Results of large-scale computer
simulations are reported which can be compared with experiments.

PACS numbers: 61.50.Cj, 64.60.My

The isothermal crystallization of a liquid or amorphous
material is mediated through the nucleation and growth of
small crystallites. The emerging regular crystal structure
that defines the crystallites is obtained through a rearrange-
ment of the local atomic composition. Even in the absence
of elastic effects this implies a subtle coupling between
the local crystal structure and composition. Motivated by
the possibility of making simultaneous measurements of
the crystallization kinetics (i.e., the development of Bragg
peaks in large angle x-ray scattering) and the compositional
reequilibration (i.e., through small-angle x-ray scattering),
and by preliminary reports of such measurements [1], we
have developed a nonlinear field theory to describe these
phenomena [2]. A large-scale numerical analysis of this
model is used to study the crystallization process and can
be compared to experiment.

We consider isothermal crystallization at a concentra-
tion nearly equal to the equilibrium crystal stoichiometry,
that is, polymorphic crystallization. Our model involves
two coupled stochastic fields, and is related to previous
work on order-disorder transitions [3] and to model C of
critical dynamics [4]. The local crystalline order is mod-
eled by a d-component nonconserved vector field P(x, t)
of space x and time t. The local crystal orientation is
represented by the direction of P, while the magnitude
of P determines the relative order of the system. The
free energy is an analytic function of the fields, and the
isotropy of the disordered state implies that the poten-
tial density should be an O(d)-symmetric function of the

ordering field, i.e., V(P) = f(~P~ ). Since crystalliza-
tion is a first-order phase transition, f must be expanded
to at least (~P~ ) . The continuous symmetry of this en-

ergy is unrealistic for samples with many crystallites (i.e.,

polycrystalline), since grain boundaries or domain walls
(due to lattice mismatch) always exist between neighbor-
ing crystallites. Thus an explicit symmetry breaking term
must be added to suppress the "spin waves" [5] associated
with O(d) systems.

The other field, c(x, t), is a scalar globally conserved
field which represents the local atomic composition of the

and

Fz[t/t, c] = dx —iV'c(x)i
2

+ —c(x) + —c(x) i P(x) i2 2
(2)

The term cosign&(x)] breaks the rotational symmetry of
the ordered state by introducing n wells in 0, which
is somewhat analogous to the Z„model [6], but with
an important difference, explained below. Here cosO =
x . P/~P~, and x is a constant unit vector. The size of
the parameter b dictates the type of domain walls which
forms. For small values of b, it is energetically favorable
for the ordering field to jump between neighboring
orientations at constant ~P~, thereby mimicking a grain
boundary with only a lattice mismatch. For large values
of b it is favorable for the magnitude of P to decrease
at a grain boundary, corresponding to amorphous material
trapped at the boundary.

For the simpler case of order-disorder transitions [3,7]
the coupling parameter n is explicitly a function of the
average concentration and goes to zero at or near perfect
stoichiometry. This coupling leads to concentration Auc-
tuations at antiphase domain boundaries during the order-
ing process. The physical interpretation of this result is

binary alloy [3]. Since, in equilibrium, the crystal orienta-
tion is independent of the local atomic composition, c is a
nonordering field which couples symmetrically to the or-
dering field. In the model, no variation in density between
the two phases is described, except for that controlled by
concentration variation.

These considerations lead to a free energy functional
F = Fi[tb] + F2[t/t, c], where

dx —~VP(x) I' + —"
ly(x) I' + —[IP(x) I']'

s 1 + b cos[n0(x)] -
z z

4 1+6
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and

ay/at = —r bF/8P+ ~~ (3)

that the system attempts to order at the ideal stoichiome-
try by pushing any excess concentration to the antiphase
domain walls. The coupling has a similar inhuence in
the present model, with a subtle difference; the amount
of concentration pushed to a domain wall depends on the
relative orientation of the neighboring crystallites and the
size of crystallites. This is the essential difference from
the Z model and it leads to interesting results, to be dis-
cussed later.

In equilibrium, the concentration field can be con-
veniently integrated out giving rise to the free energy
functional F'[P] = Fi[P] + F2[/], with Fz[P] =
(—n /8w) f dx f dx'(P(x)( 'U([x —x')))P(x')(, where
F' determines the equilibrium probability distribution
of P. In Fourier space, the nonlocal coupling 'U(x)
has the form 'U(q) = 1/(q + w/p), except at q = 0
where 'U(q) = 0. Nonlocality becomes important for
QP/w ~ s = Q~/r, where s is the correlation length
associated with the ordering field.

Mean-held expressions for the domain-wall energy can
be straightforwardly obtained in d = 2. Indeed, most of
our detailed analyses are for two dimensions, but we ex-
pect qualitatively the same results in three dimensions.
Writing P(x) in polar coordinates, i.e. , P = R[x cos(0) +
y sin(0)], and minimizing F with respect to 0(x) and R(x),
gives the mean-field interface equations. These represent
lattice mismatch between neighboring crystallites with sur-
face tension o.g and amorphous material trapped within
domain walls with a tension o.~. The surface tension is
defined to be o. = ~ f dx~B, PO(x)~ /2, where $0(x)
corresponds to a minima of the free energy with bound-
ary conditions fixed at x = ~~. The boundary condi-
tions which determine o.R and o.g are [P(—~), P(~)] =
[Rx, Rx] and [P—(—~), P(~)] = [Rx, R(x sin(2~/n) +
y cos(27r/n))], respectively, where P = ~Rx is a minima
of F. It is straightforward to obtain these surface tensions
near the first-order transition point (i.e., s = 16r/3), in
the limit that the nonlocal interaction can be ignored (i.e.,s» a /2w). For convenience v is set to unity. The en-
ergies per unit area are o.

ti
= (2R3/n)g~sb/(I + b) and

cr~ = (3s2/128)$3tr. For n ~ ~, the miscibility gap be-
tween neighboring minima goes to zero, and o 0 ~ 0. For
n = 2 the model essentially reduces to model C [3,4]. For
the simulations to follow, the parameters were chosen such
that the ratio og/rrz is ap. proximately 0.8, implying that in-
terface solutions involve paths which go from one global
minima of the effective potential to another by varying R
but without entering the center well.

When the system is brought out of equilibrium, it
evolves into its new equilibrium state according to
Langevin equations, whose form is dictated by the free
energy and by conservation laws, namely,

Rc/Bt = D V' BF/Bc + i1, , (4)

where the functional derivatives ensure that the free en-
ergy is minimized in equilibrium. I is a mobility, D is
a diffusion constant, and the random noises g have inten-
sities proportional to the temperature T as determined by
Iluctuation-dissipation relations [4]. Equation (4) can be
solved in the long time limit [7] giving

c(q, t) = e~'c(q, 0) + dt'e~~' 'l rj, (q, t')

n (e i' —1)
2(w + Pq2)

dxe"')P(x, t)), (5)

where y —= Dq (w—+ pq2). The first two terms in this
expression describe the rapid reequilibration to the new
metastable state. The last term indicates that c is slaved
to the dynamics of P. For n = 2, an approximate so-
lution for P can be used to solve for the concentration
correlation function S,(q, t) —= (~ c(q, t) ~ ). This calcula-
tions shows that, for large q, S,(q, t) ~ 1/q" ', which
is due to concentration fluctuations at the interfaces. For
the present model the difference in domain wall energies
leads to varying concentrations being collected at domain
walls. Since c is a conserved field, the average concen-
tration left behind in each crystallite varies. This effect
is not present if all domain walls have the same energy,
as, for example, in the case of the Z„model mentioned
earlier. The variation in c from crystallite to crystallite
should lead to "Porod tails'* [8], i.e., S,(q, t) ~ 1/q"+' for
large q. Indeed, the effect of variations in c both between
crystallites and at domain walls leads to both 1/qd+' and
1/q" ' behavior, as we shall see below.

Equations (3) and (4) were numerically integrated in
two dimensions. Euler's method was used for the time
derivative, and central difference formulas were used for
the spatial derivatives on a square lattice of N sites,
with periodic boundary conditions. For these simulations
the dimensionless parameters [9] were set to unity with
the following exceptions: (s, n, p, T, b, 5 t, X, n) =
(4, 0.1, 0.25, 0.0016, 2, 0.01, 256, 12). The system
was initially prepared in a disordered state and quenched
below the first-order transition point where the amorphous
state is metastable. Runs for 50 independent realizations
of the initial conditions were averaged. Immediately
following the quench, the system equilibrates in the
metastable amorphous state, before the nucleation and
growth of crystallites begin. The nucleation rate can be
approximated [10] by I ~ V exp bF, /T, where A—F, is
the activation energy of a critical droplet, V is the volume
of phase space available for nucleation, and temperature
is in energy units. Using the simulation parameters
yields a negligible nucleation rate I —10 ' because the
volume of phase space is small. While the rate can be
increased by tuning the parameters so that there are large
fluctuations in the ordered state or the system is close
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to a point of spinodal ordering, it is more useful and
faithful to experiments to incorporate a nucleation rate
of I = 1/40, wherein seeds of fixed critical size were
randomly introduced in space and time in such a way as
to mimic homogeneous nucleation.

Figure 1 shows the typical evolution of configurations
as crystallites form, grow, and coalesce. The magnitude
of the ordering field (i.e., I/I) is imaged on the left,
while on the right the local concentration is shown. The
concentration held does not phase separate, and can be
seen to be slaved to the ordering field as suggested by
Eq. (5). Concentration fiuctuations can be discerned on

'/ ' »

the gray-scale image Fig. 1. The concentration within
various crystallites reveals relative variations comparable
to the average composition. These variations are the
origin of the Porod tail in 5, (q, t) (see below).

In Fig. 2, the structure factor for the concentration
field is displayed. 5, (q, t) shows both Porod behavior
(i.e., 5, —1/q"+' for intermediate wave numbers) and
1/q" ' behavior for large wave numbers as is shown
in the inset. In the same figure, the structure factor for
the field corresponding to crystalline ordering 5~(q, r) =
(P*(q, t) . P(q, r)) = (IP(q, t)I ) is shown. The inset
shows that 5~ also has a Porod tail, due to the sharp
domain walls between neighboring crystallites [11]. As
expected, the tail appears in the range 1/8 ( q « 1/s,
where 8 = 70 is the average domain size and s = 1 is
the correlation length.

Experimentally, small angle scattering is sensitive to
the density fluctuations given by regions of different
composition [S,(q, r)), and the high angle scattering is
sensitive to the orientational distribution of crystallites

[5~(q, t)]. The small angle scattering is not sensitive to
orientational order. If the composition is the same in
every crystallite, as would be the case were c and P
uncoupled, the small angle scattering should show 1/q
tails. It is the coupling in the present model which gives
the Porod tails (1/q '), and we believe this is also
the origin of those tails in the experimental observations.
Care must be taken in each system to relate the scattering
density (electron density for x rays and nuclear density
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FIG. l. Two parallel sets of configurations imaging the
local magnitude of order parameter I/I (left) and the local
concentration c (right) as a function of time t = 8, 24, 48, 80,
from top to bottom. Gray scale of concentration shows weak
step function in bulk crystallites due to differences in domain-
wall energy. Also note the large concentration differences at
different types of domain walls.
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FIG. 2. Structure factors S,. (q, t) (left) and S~(q, t) (right) as
a function of wave number q, with times t = 8, 16, 24, 80
from bottom to top. Insets are ln-ln plots at t = 80 showing
that both S, and S~ have Porod tails —1/q"+', where d = 2.
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for neutrons) to the underlying variables (c and P in our
simple model) controlling the transition.

In Fig. 3, the time evolution of S, is shown for a few
wave numbers. To improve statistics, several q's have
been binned together. A two-step process is apparent.
The concentration fluctuations of the prepared disordered
state initially relax to a metastable state, followed by
nucleation and growth. The initial relaxation is evident
in the dependence of the fraction of ordered phase on
time, shown in the inset: there is no visible nucleation for
t ~ 5, whereas concentration fluctuations undergo rapid
relaxation in that time interval. These kinetics are well
fit by a standard Kolmogorov form [12], with an Avrami
exponent corresponding to homogeneous nucleation. It
is possible that initially a decrease in the structure factor
may be observed instead of an increase. Such a situation
arises either when metastable fluctuations are smaller
than those of the initial state or simply from probing
wave numbers greater than the inverse correlation length,

q ) I/g. In either case, this initial relaxation is followed
by the nucleation and growth of crystallites, as is evident
in the fractional change of ordered phase. The resulting
polycrystalline sample should, in principle, anneal to a
single crystal, the final equilibrium state. This latter time
scale is beyond the scope of this work, however.

To summarize, the three main conclusions following
from our model are as follows: (I) The crystallization
process occurs in three steps, a rapid relaxation in the
metastable state, nucleation and growth of a polycrys-
talline sample, and finally the annealing of the polycrys-
talline sample; (II) S,(q, t) can show both 1/q"+' and
1/q ' behaviors at intermediate and large q, respec-
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FIG. 3. 5, vs t for different wave numbers q = 0.55, 0.65,
0.75, 0.85, and 0.95 from bottom to top indicates two time
regimes. Inset shows the ordered-phase fraction (dashed line)
is well fit by Kolmogorov form (solid line).

tively; (III) S& has a Porod tail [11]. These results are
experimentally accessible and are in qualitative agreement
with preliminary experiments conducted by Brauer et al.
In these experiments simultaneous in situ small and large
angle x-ray scattering measurements were made. The dy-
namics of the small angle scattering intensity was very
similar to Fig. 3 and exhibited a Porod tail.
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