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Domain Coarsening in Systems Far from Equilibrium
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The growth of domains of stripes evolving from random initial conditions is studied in numericaI
simulations of models of systems far from equilibrium such as Rayleigh-Benard convection. The size
of the domains deduced from the inverse width of the Fourier spectrum is found to scale as t'/ for
both potential and nonpotential models. The morphology of the domains and the defect structures are,
however, quite different in the two cases, and evidence is presented for a second length scale in the
nonpotential case growing as t / .

PACS numbers: 64.60.Cn, 47.20.Bp

When a system is quenched through a transition from a
disordered to an ordered state small domains of the differ-
ent symmetry manifestations of the ordered phase initially
form. These then grow to give larger ordered regions,
asymptotically approaching the ideal of very large ordered
regions. There has been a great deal of study of this coars-
ening process in systems where the different states are
equilibrium thermodynamic phases at finite temperature.
In this paper we extend this question to systems in which
the "ordered" state is produced by a pattern forming in-

stability in a system far from equilibrium (the canonical
example being Rayleigh-Benard convection).

We investigate the formation of a "stripe" state in
two dimensions, with rotational invariance in the plane.
Rayleigh-Benard convection is such a system, with the
stripes corresponding to the familiar convection rolls. Af-
ter a quench into the ordered region, given by stepping the
Rayleigh number (the dimensionless temperature differ-
ence across the depth of the cell driving the convection),
regions of differently oriented stripes grow from random
initial fluctuations as the dynamics rapidly drives the sys-
tem locally to a state with the characteristic length scale
of the stripes. The questions that arise are how does the
length scale over which the stripes are ordered grow, and
what are the scaling properties, for example, characterized
by the structure factor. In addition, because of the stripe
nature of the ordered state, there is the question of what
is the large scale morphology; for example, is it best de-
scribed as domains of rather straight stripes with sharp do-
main boundaries between them (i.e. , a pattern of grains),
or are the stripes curved on the large length scale. (This
same question would arise in the quenching into an equi-
librium stripe phase such as a two-dimensional smectic. )
For the system far from equilibrium there is also the ques-
tion of "wave-vector selection, " i.e., what is the long time
asymptotic wavelength of the stripe pattern. Note that for
a thermodynamic equilibrium phase the asymptotic wave
vector will simply be the one that minimizes the free en-

ergy. For a stripe state far from equilibrium there is no
corresponding argument, and indeed the question of wave-
vector selection has aroused considerable interest.

In this paper we study the formation of the stripe
phase in numerical simulations of equations that model
Rayleigh-Benard convection. These equations are based
on the Swift-Hohenberg equation that was introduced [1]
to look at the effect of fluctuations on the transition to
the convective roll state. It is an equation for a real
order parameter P(r, t) that is a function of the horizontal
coordinates r = (x, y) and time t. In auniform convective
state of straight parallel rolls P takes the form

P ~ cos(q r + P) + harmonics, (1)
with q the wave vector of the stripes and P the phase
variable, and gives the horizontal variation of the pattern
that is involved in questions of pattern formation. Swift
and Hohenberg were interested in universal aspects of
the transition, and so wrote down the simplest dynamical
equation consistent with the symmetries and the existence
of a stripe state,

P = eP —(V + 1) P —
(P + ri(r t), (2)

with the dot denoting a time derivative and V' the two-
dimensional Laplacian. Here e is the control parameter,
depending linearly on the temperature difference driving
the convection, with the transition to stripes occurring for
e ) 0, and g is a noise term that was introduced to inves-
tigate the effect of thermal fluctuations on the transition.
Equation (2) also describes a near equilibrium system,
since the dynamics are "potential, " i.e. , follow the descent
of a potential functional, which would be the free energy
for the near equilibrium system. Equation (2) has since
been much used as a useful qualitative model of features
of pattern forming systems that may not be quantitatively
universal, since it incorporates the three important features
of such systems, namely, growth of the disturbance, non-
linear saturation, and dispersion. However, the potential
aspect of the dynamics is not appropriate for systems far
from equilibrium, and so various modifications have been
proposed to account for this aspect. In particular, Green-
side and Cross [2] suggested a modification of the nonlin-
ear term to yield

0 = eA —(~ + 1) 0 + 3(~P)'~'0 (3)
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As well as being nonpotential, this equation also gives a
better representation of the stability of the stripe phase
as the wave vector and control parameter are varied (the
"stability balloon" ) for convection [2]. A further model
is given by incorporating the effects of mean drift. In
the convection system a mean fiow (averaged over the
depth of the cell), slowly varying with the horizontal
coordinates, is an important additional degree of freedom
that qualitatively changes the physics [3,4]. This leads to
the equations

P + U . 7'P = eP —(7' + 1) P + NL,

V'&& u=nz, (4)

~ A —o.(V —c )A = g z V(V P) X VP,
where U(x, y, t) is the divergence-free horizontal velocity
that advects the field P in the first equation (with the
symbol NL referring to either of the nonlinearity choices).
The velocity U is defined in terms of the vertical vorticity
0, , which is in turn driven by distortions of the stripe
pattern through the third equation. Here g gives the
coupling between the mean How and the stripes, and
increases as the Prandtl number (the ratio of viscous to
thermal diffusivities) decreases. The parameters. r, cr,
and c may be chosen to match the quid system: we use

= 1, o. = 1, and c = 2. We will present results for
e = 0.5 for Eqs. (3) and (4), and e = 0.25 in Eq. (2) since
the dynamics appears to freeze at long times in this model
for the higher value.

Coarsening in the Swift-Hohenberg equation has been
studied by Elder, Vinals, and Grant [5]. In the presence
of the noise term (corresponding to a finite temperature
thermodynamic system) their numerics yielded a length
scale increasing with time as t' . In the absence of noise
they found a slower growth, consistent with a t'~ scaling.
These results are surprising at first sight, since the long
time dynamics of the system is governed by the "phase
diffusion equation, " an equation for the slow space and
time variation of the phase P introduced in Eq. (1),

P = D((B(((b + Dphil~+, (5)
where ~~ and J refer to directions parallel and perpendicu-
lar to the local wave vector, and D~~(q) and D~(q) are
diffusion constants that depend on the local wave number

q = ~V @~. Simple power counting leads to a length scale
growing asymptotically as g —t'~ Earlier, ho.wever,
Cross and Newell [6] had proposed that on long time scales
the local wave number should tune itself to a value qf for
which D~ = 0, so that the second term in Eq. (5) drops
out. In addition, the first term in Eq. (5) is also zero since
cl~~ @ = q is then constant. Cross and Newell proposed that
higher order gradient terms in the phase equation would
control the dynamics. In the original paper they suggested
a scaling s —t 't3, but more recently Cross and Hohenberg
[7] suggested t'~ as the correct result of this analysis,
closer to the results of the numerics [8]. The tuning of the
wave number to qf follows directly for potential systems,
since this wave number is also the one that minimizes the

potential. However, Cross and Newell suggested that this
was also valid more generally, since, in the absence of
coupling to mean drift, focus singularities also relax the
wave number to this value. (A focus singularity is the
center of curvature of axisymmetric stripes or a sector of
such stripes, and permits the disappearance or nucleation
of stripes driven by curvature effects until D~ ~ 0.) This
tuning does not survive the coupling to mean How effects.
Thus at the outset of this work we expected to find a t'~
or t't~ scaling for the nonpotential case Eq. (3) with a
concomitant approach of the mean wave number to qf,
but a different scaling, perhaps t', with the addition of
mean How.

We now summarize our results. We find a slow evo-
lution of the characteristic length scale s~, defined from
the width of the wave-vector distribution in Fourier space,
consistent with g~ —t' for all three cases studied: po-
tential, nonpotential, and with the inclusion of mean flow
(also nonpotential). For the nonpotential cases, a second
length scale s„defined from the correlations of the ori-
entation of the stripes in real space (a less accurate cal-
culation) appears to show a different scaling consistent
with g„—t'tz In the nonp. otential cases the asymptotic
wave number does not approach the value qf at which
Dz is zero. Rather it seems to approach closely the wave
number at which isolated dislocations are stationary. The
morphology of the pattern appears quite different in the
potential and nonpotential cases (see Fig. 1). For the po-
tential equation the pattern [panel (a)] may be described as
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FIG. 1. Morphology of the stripe pattern in (a) potential and
(c) uonpotential models of convection during the coarsening
process, with black and white denoting positive and negative
values of the field P. The pictures show one quarter of the
actual system used. Panels (b) and (d) show the corresponding
defect structure visualized as the regions where the amplitude
of the stripe pattern (calculated using Fourier filtering methods)
falls below 75% of the maximum value.
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largely consisting of domains of straight stripes with sharp
boundaries between the domains, although there are also
some regions where a smoother variation of the stripes is
seen. Two kinds of domain walls may be identified: lines
where one set of stripes ends and a second set starts, visible
in panel (b); or lines where there is a sharp kink in the stripe
orientation, but a smaller perturbation of the amplitude so
that there is no signature in panel (b). For the nonpoten-
tial equation stripes smoothly curved over the character-
istic scale are evident [panel (c)], and isolated dislocation
defects are more apparent [see also panel (d)].

The variation of the length scale $~ with time is shown
in Fig. 2, showing results from our longest runs (times to
7400) and largest systems (around 1000 in size). These
results were produced from random initial conditions
(independent random numbers on each mesh point) with
a time step of 0.2, after an initial transient of time length
1 integrated with time step 0.01 to allow the large wave-
vector components of the initial condition to decay. The
numerical scheme was a pseudospectral scheme using
1024 X 1024 Fourier modes with second order accurate
time stepping described previously [9], with periodic
boundary conditions. Each integration step took 0.5—
1 sec (depending on the complexity of the nonlinear term
in the equation) on one processor of a Cray C90.

Figure 2 shows the time variation of the "width" Bq of
the structure factor 5(q, t) = (P(q, t)P( q, r)) in—Fourier
space, with both axes on logarithmic scales. The average
() is over angles of the wave vector q, and the data
represent a single run, although other runs were done
with consistent results. We extract the width 6q from
a Lorentzian squared fit

(6)

with 6q defined as the half width at half height 6q =
0 322c/~b: A. lthough this fit does show systematic
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FIG. 2. Plot of the logarithm of the inverse length scale as a
function of log time for the potential (squares) and nonpotential
(crosses) models. The main figure shows the width of the
structure factor; the inset shows the inverse of the half width
of the decay of the orientation field correlation function in real
space.
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deviations, it yields values of 6q that are insensitive to the
range of the fit. (We have used a range ~46q. ) For both
the potential Swift-Hohenberg model (as seen earlier by
Elder, Vinals, and Grant [5]) and the nonpotential model,
the long time variation is well fit by a power law 6q ~
r ' 5 over two or more decades in time [10]. This same
scaling was found including the mean flow: We used
vorticity coupling constants g = 10 and g = 20 with

= 1, c = 2, o = 1, in a smaller system size of about
536 with a 512 X 512 mesh because of the increased
numerical complexity, and to shorter times (about 4000)
to eliminate finite size saturation effects. The results
remain consistent with a power law scaling of around 5,
and are clearly not consistent with a t'~ scaling.

We can also wonder whether the patterns are charac-
terized by a single (long) length scale. To investigate
this question we have calculated the stripe orientation field
correlation function. The Fourier space filtering method
to extract the local orientation 0(r, t) of the stripes has
been described previously [9]. We then calculate Cz(~ r-
r'l, r) = (e' ~"') ~" '))), averaging over the spatial coor-
dinates r and r' for fixed r = l7. —7'l for each time t. As
expected the correlations decay with increasing separation
r, and from this decay we can extract a characteristic length
$(t). (We have chosen to use simply the half width at half
height of C2, since the quality of the data and the limited
range of r probed due to the finite size of the system do not
warrant a functional fit to the decay. ) Interestingly, for the
potential Swift-Hohenberg model we find that the varia-
tion of g is roughly consistent with Bq ' from the width
of the structure factor (the fit shown in the inset to Fig. 2
over a relatively small range of times gives s —r ). On
the other hand, for the nonpotential model the variation is
close to g —t' rather than the t'~ for Bq '. Inspect-
ing the domain morphology from Fig. 1, or better from a
plot of the orientation field 0(r), suggests that in the non-
potential case there may be stronger correlations along the
stripes than perpendicular to the stripes. We might expect
the latter to have a stronger inhuence on the range of wave
numbers in the pattern that determines 6q.

An important question that has aroused much interest
in nonequilibrium stripe states is the question of wave-
vector selection, i.e., is there a preferred wave vector
for each set of control parameters that is selected in
patterns under a wide range of situations such as different
geometries or initial conditions. One popular hypothesis
in the literature has been the "maximum growth rate"
idea, namely, that the wave vector selected is the one
that has the maximum growth rate in the linear (small
amplitude) regime. More recently the importance of the
nonlinearity of the system has been studied, mainly in
two classes of situations: the evolution from random
initial conditions in a one-dimensional geometry; and
geometrically simple situations in one or two dimensions,
for example, concentric stripes, or patterns with one
or two defect structures such as dislocations or grain
boundaries (see Ref. [7] for a review). The present
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situation combines aspects of both of these: we start from
random initial conditions, but also the evolution leads to
states with defects that allow wave-number relaxation. In
the potential case all results have shown that the wave
vector that minimizes the potential is selected in all cases.
For the Swift-Hohenberg model at e = 0.25 this is very
close to q = 1, and indeed we see, Fig. 3, that the mean
wave number is very close to this value over the whole
time period. For the nonpotential cases the evolution
is much more interesting. Although a value q = 1 is
produced by the early evolution where the biharmonic
operator tends to filter out other wave numbers in the
linear evolution (i.e., consistent with the maximum growth
rate idea), at later times there is a trend to smaller
wave vectors, and then a slow increase to a long time
asymptotic value away from unity. Empirically we find
that the wave number at long times approaches a value
that is very close to the wave number qd at which isolated
dislocation defects are stationary, i.e., have zero climb
velocity. (These values are obtained by separate runs
measuring the climb velocity of a defect pair in otherwise
straight stripes at various wave numbers, and the wave
number for zero climb velocity is found by interpolation. )
The relevance of the dislocation selected wave number
is confirmed by the agreement of the asymptotic wave

log, Time

FIG. 3. Evolution of the mean wave number with logarithmic
time for the potential Swift-Hohenberg model (triangles), the
nonpotential model (squares), and the nonpotential model with
added mean flow (circles). Also shown are some characteristic
wave numbers for the nonpotential model: F. the wave
number at which the stripes become unstable to the longitudinal
(Eckhaus) instability; qf the wave number selected by focus
defects at which D& goes to zero in the absence of mean flow;
and qd the wave number at which the climb velocity goes to
zero, shown for the two values of the vorticity coupling used in
the plot.

number with qd for the two different values of g, as
shown in Fig. 3.

We do not have a good theoretical understanding of
these results. In the potential case, a dimensional analysis
of the phase equation might be argued to lead to a
t'~ scaling since the diffusion constant tends to zero as
the wave number approaches its long time asymptote.
Although this result was found by Elder, Vinals, and
Grant [5] in the case with added noise, both they and
we find a slower dependence in the absence of noise,
although the expectation [11,13] is that noise should
be irrelevant to the long time, large scale dynamics.
Recent work [12] has suggested the importance of defects
in the coarsening process leading to corrections to this
naive result. The defect structure of stripe phases is
complicated, and understanding the role of the various
defects in the coarsening process as well as an extension
of these ideas to the nonpotential case remain challenges
for the future. We also hope experiments on larger aspect
ratio systems than to date may test these ideas.
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