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Diffusion of Monolayer Adatom and Vacancy Clusters: Langevin Analysis and Monte Carlo
Simulations of their Brownian Motion
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In recent observations of Brownian motion of islands of adsorbed atoms and of vacancies with
mean radius R, the cluster diffusion constant varies as R ' and R . From an analytical Langevin
description of the cluster's steplike boundary, we find three cases, R ', R, and R, corresponding
to the three microscopic surface mass-transport mechanisms of straight steps. We thereby provide a
unified treatment of the dynamics of steps and of clusters. For corroboration, we perform Monte Carlo
simulations of simple lattice gases and derive atomistic diffusion constants.

PACS numbers: 68.35.Fx, 36.40.Sx, 66.30.Fq, 82.20.Wt

Characterizing the mechanisms of atomic mass trans-
port on surfaces is crucial to the understanding of many
important processes, such as epitaxial growth. A notable
manifestation of surface transport is the diffusion of clus-
ters [1—5]. Of the few experimental studies relating the
cluster diffusion to the island size, most have considered
islands of no more than a few tens of atoms [2,3]. For
such small sizes, the details of the geometry of the struc-
ture and the many energy barriers for single-atom diffusion
significantly affect the diffusion process, complicating the
analysis. Recently, however, there have been two studies
[4,5] in which the diffusion constant of the islands D, was
measured as a function of large approximate island radius
R. Morgenstern et al. (MRPC) [4] have studied single-
layer vacancy clusters on Ag(111). Wen et al. (WCBET)
[5] have studied adatom islands of Ag on Ag(001). In both
experiments the number of vacancies (atoms) in the island
ranged from 10 to 10 . For such sizes it becomes mean-
ingful to describe the step edge position by a continuous
variable. This Letter shows how the same processes that
govern continuous step fluctuations also produce adatom
and vacancy cluster diffusion. These equilibrium Auctua-
tions of steps on vicinal surfaces have been observed and
analyzed in detail [6—8]; specifically, their spatial and tem-
poral correlations have been characterized in the contin-
uum limit using Langevin dynamics [9—11]. From the
similar Langevin analysis of islands that follows, we show
how the Brownian motion of clusters is directly related to
the various mechanisms of atomic transport across the sur-
face. By comparison with experiment, we check that this
unification of coarse-scale and atomic motion presents a
self-consistent picture that is fuller than the one obtained
by scaling arguments [4,5, 12] alone.

Consider an adatom or vacancy island whose center of
mass undergoes some random fluctuations. We assume
that these fIuctuations are caused entirely by the Auctua-
tions of the boundary of the island, defined in cylindrical
coordinates by

r = r(0, t),

where r and 0 are the usual radial and azimuthal
coordinates and t is the time variable. We assume that the
boundary fluctuates around a fixed mean radius R. Under
these conditions we can define a dimensionless variable
g(0, t) for the island boundary by

g(O, t) = [r(o, t) —Rj/R. (2)

The diffusion constant D, of the cluster is defined as

&rcM(t))
4t (3)

where rcM(t) is the position vector of the center of mass
of the island, and rcM(0) is taken as the origin.

There is a close relationship between the microscopic
mechanisms of mass transport and the Langevin equations
that follow from them [9—11,13]. This analysis for step
fIuctuations of straight steps can be generalized to a circu-
lar geometry [14]. This can be shown to yield a Langevin
equation for g (0, t) of the form

Bg(0, t) = S(g, ti, t) + e(i, t),
Bt

where +(g, 8, t) is a functional of g, 0, and t, and g(0, t)
is a noise term. Reminiscent of capillary-wave analysis
of step motion [10,11,15], this analysis is simplified in
the Fourier representations g(0, t) = g, g„(t) exp(in0),
g(0, t) = g„g„(t)exp(ing), with n = 0, ~1, ~2, . . . .

Then

ag„(t)
g (t) + C (t) . (5)

Here 7.„ is the relaxation time of an excitation of the nth
mode, with wavelength 2vrR/n, of the cluster boundary.
These relaxation times have been measured, for example,
for steps on Si(111)and Si(001) [8]. From the equiparti-
tion of energy among the capillary modes g, (t), it follows
that

(~g, (t)~ ) = k T/2~PRn (6)
in equilibrium [15],where ke is the Boltzmann constant, T
is the absolute temperature, and p is the step edge stiffness.
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Combining the definition (3) for D, with Eqs. (2), (5), and
(6), and linearizing in g, we get

D, = kti TR / rr P r i . (7)
As in the case of "straight" steps (or the decay of

surface profiles [16]), there are three possibilities for the
functional + (or the linear coefficient r„)and the noise
g, corresponding to three distinct mechanisms of mass
transport occurring at the island boundary [14]. These
are illustrated schematically in Fig. 1. The expressions
for ~ ' can be drawn from the Langevin analyses of
straight steps [10,11] essentially by substituting into the
analogous expressions ~n~/R for the wave vector q along
the step [14].

Periphery or edge diffusion (PD).—When the mass
transport occurs only along the edge of the boundary
(and the number of atoms or vacancies in the island are
preserved), r„' is given by

r„' = D„c„I),Pn /k TR (8)

where D„ is the (tracer) diffusion constant of a single
atom diffusing along a step edge, c,t is the line concentra-
tion of atoms along the step edge, and 0 is the area of the
surface unit cell.

Terrace or surface diffusion (TD) —Suppose .that the
boundary of the island can emit atoms very rapidly, but
atoms can only slowly diffuse away from the boundary.
The rate limiting step in mass transport is then the
diffusion on terraces. We find

r„' = 2D,„c,„I), P~n( /ktiTR, (9)

where D,„ is the (tracer) diffusion constant of a single
adatom on a fiat step-free surface; c,„ is the surface
concentration of adatoms on the surface far away from the
step edge in the case of an adatom island. In the case of a
vacancy cluster, c,„ is the average surface concentration of
adatoms in the interior of the monolayer vacancy island.

FIG. 1. Schematic representation of the three types of diffu-
sion mechanisms considered here. The large circle represents a
vacancy island on the surface. Two paths of the adatom motion
marked TD (for terrace diffusion) and PD (for periphery diffu-
sion) for the same initial and final positions of the migrating
atom are depicted with arrows. The atoms marked EC repre-
sent the third mechanism of evaporation and condensation from
the vacancy edge. The atom marked by a cross is one that has
just condensed onto the vacancy edge. The one with a filled
circle on it is the one that will soon evaporate from the edge.

Furthermore, if carriers attach or detach from only one
side, as is believed to be the case for Ag(111) [4], one
must remove the factor of 2 in Eq. (9).

Evaporation and condensation limited diffusion
(EC).—In this case the rate limiting step for mass trans-
port is the random attachment or detachment of adatoms
(or vacancies) at the edge of the boundary (from or to a
reservoir of adatoms on the terraces, or in principle in the
vapor). Then r~ takes the form

r„' = I p n /kti TR

where I, the step mobility, is proportional to the rate of
random attachments (detachments) [8,15].

The cases PD, TD, and EC are examples of models 8,
C, and A, respectively, in dynamical critical phenomena
[17]. In all three cases the diffusion constant D, of the
island or cluster is given, for small values of the time, by
a relation of the form

D, =D,pR

where n = 3, 2, and 1 for the cases of PD, TD, and
EC, respectively, and the corresponding expressions for
D,o are D„c„A /rr, 2D,„c,„A /rr, and I /rr Gruber.
[18] found an expression for D, for a three-dimensional
void diffusing in a solid for the case of PD. Generalizing
his arguments to two dimensions, we obtained the same
expression for D, as in our Langevin analysis of the PD
case. To our knowledge, the expressions for TD and EC
are new.

These results clearly show that the exponent n is a
signature of the microscopic mechanisms of mass transport
involved in the diffusion of the island. To check that
these continuum results apply for the island sizes of the
experiments, we also performed Monte Carlo simulations
of three simple lattice-gas models corresponding to the
three types of mass transport. We used the Metropolis
algorithm on a square lattice with an attractive nearest-
neighbor (NN) energy e. Vacancy clusters with initially
square shapes of linear dimension L were simulated (so
R = L/~sr ). Data were not taken until the cluster had
equilibrated to a nearly circular shape. In all three models
I. was chosen to be 10, 20, 40, and 80 atomic spacings.

In the model for PD, Kawasaki dynamics (i.e., single-
atom hops to a neighboring [vacant) site) was used with
the restriction that adatoms were allowed to diffuse only
along the edge of the island via next-nearest-neighbor
(NNN) exchange between a vacancy and an adatom.
The temperature was set at T = 0.6e/king. For present
purposes we define an isolated adatom (vacancy) site
as one that has all four NN sites empty (occupied by
atoms). On a perfectly straight step, a NN hop of an edge
atom causes the formation of an isolated vacancy and an
isolated adatom. This process costs an energy 6e and
hence is very slow. If the isolated adatom now hops along
the edge to remove the isolated vacancy-adatom pair just
generated, then it can do so with unit probability since
the energy cost is —e. However, if the isolated adatom
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created does not hop along the edge before the vacancy
penetrates the bulk, then we get bulk vacancy diffusion,
which is prohibited in PD. (If an isolated vacancy
were created, its hops in the surrounding area would
happen with unit probability since they involve no energy
change. ) Also, most atoms on an equilibrated vacancy-
island edge can make NNN hops —but not NN hops—
without generating an isolated vacancy. The exclusively
NNN-hop dynamics avoids these problems of very slow
PD diffusion with NN hops and penetration of isolated
vacancies into the bulk [19]. Any NNN hop that creates
an isolated vacancy is also forbidden. So long as the
diffusion is restricted to the periphery and is local, the
exponent n should be independent of the specific choice
of dynamics.

In the model for TD, the lattice-gas Hamiltonian was
slightly modified so that the energy of an isolated adatom
on the terrace within the vacancy island was assigned an
energy of e rather than 4e, increasing the equilibrium
adatom density to about 10%. This modification allows
the vacancy cluster edge to emit atoms rapidly, thereby
facilitating adatom motion across the pit. Kawasaki
dynamics was again used, but now diffusion of adatoms
was allowed only via nearest-neighbor exchange between
a vacancy and an adatom. The temperature was set at
T = 0.5e/kg.

In the model for EC, Glauber dynamics (i.e., removal
or addition of single atoms) was used with random
attachment or detachment of adatoms allowed only along
the edge of the island, at T = 0 6e/k~. In t.his dynamics
the number of vacancies in the cluster fIuctuates. For each
value of L, the chemical potential of the reservoir was
adjusted so that the mean number of vacancies comprising
the cluster remained approximately the same as in the
initial square configuration.

From the vacancy island simulations, plots of logD,
vs logL were made in all three cases. These plots with
their best linear fits are shown in Fig. 2. The slopes of
the linear fits gave the three values of n = 3.1, 2.03, and
0.97, respectively. These values confirm the predictions
of the Langevin analysis and the correspondence of the
mass-transport mechanisms with the different values of

The y intercepts of these fits gave the values of D,o,
which in turn give D„, D,„,and I in the three cases.

In each case, to check the derived value of D,o, we
computed using the same Hamiltonians and dynamics, but
applying a weak potential gradient F in various ways, the
constituent diffusion constant, D„, D,„, or I'/a (where
a is a lattice constant along the step). The average
velocity v of the diffusing species was calculated as a
function of F, and the carrier diffusion constant obtained
by applying the Einstein-Nernst relation D = k~T~v(/(F~.
For PD F was applied along (parallel to) the initial
straight edge of a step of width w = 40. For the TD
case F was applied along one direction of a flat step-free
square terrace with an adatom density c,„. For EC F was
applied perpendicular to an initial straight step of width
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FIG. 2. Plot of log(D, ) vs log(L) obtained from simulations
of the three cases: EC (asterisks), TD (diamonds), and PD
(triangles) is shown along with the best linear fits. L = R ~sr
is the linear dimension of the initial square shape of the
vacancy. D, is the diffusion constant of the cluster defined
by Eq. (3). The arbitrary term 5 shifts the y intercepts to allow
display of all three cases together.

~ = 40. In this case v refers to the average velocity of
the whole step. The three diffusion constants D,t, D,„,
and I /a calculated from the set of simulations with F
agreed to within 25%%uo with their values obtained from
the y intercepts (D,o) in Fig. 2. The vacancy islands
are finite in size and hence have a nonzero curvature of
their boundaries even when they are perfectly circular
(i.e., even when g = 0). Also the Langevin analysis was
done only to first order in g. Considering this finite size
effect of the simulations and the linear approximation in
the Langevin approach we see that the agreement between
diffusion constants obtained in the two ways is good. This
agreement shows that the Langevin analysis gives a good
description of the simulations.

The area fluctuations appear to be crucial to obtain
n = 1. In a separate simulation, we modified the TD
program so that atoms were removed from one position
along the boundary and immediately reattached to it
elsewhere [so that area is conserved: f g(0, t) d0 = 0].
The resulting log-log plot indicated o. = 1.97. In fact,
this scenario might better describe the diffusion of clusters
on terraces with low diffusion barriers (especially close-
packed faces). For adatom islands (but not vacancy pits)
another diffusion mechanism is possible on such faces,
e.g. , on tl llj fcc or hcp faces with adsorption in either
threefold site. Here diffusion can occur rapidly by the
passage through the island of a dislocation line between
domains in each of the two kinds of sites [20].

For PD diffusion WCBET [5] cite values of n from
different simulations [21,22] in the range of 3 to 4. In
these simulations the number of single atoms or vacancies
in the islands were less than 10 . We believe that these
values should converge to n = 3 for larger island sizes.
WCBET [5] also present heuristic arguments for obtaining
the value of n for EC and PD diffusion. Stimulated
by the work of Pimpinelli et al, [23], MRPC [4] give
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a similar explanation of the phenomenon. Though this
approach predicts the correct exponents for the PD and
TD mechanisms of diffusion, it does not readily provide
precise quantitative information, such as the single-atom
diffusion constants and the step stiffness.

This Letter demonstrates that the phenomenon of sur-
face diffusion of large islands can be viewed in a broader
perspective: the cluster diffusion is a natural by-product
of the fluctuations of the bounding step. Observations
of step fluctuations can then be used to make predictions
about island diffusion. This approach also gives quanti-
tative predictions for tracer diffusion constants from the
observations of large island diffusion, as we illustrate for
the two experiments at hand. Using D, = 0.1 A. /s for
an adatom island of 100 atoms on Ag(001) from WCBET
[5], we get I /a = 1.8 A /s for the diffusion of a step on
Ag(001) at room temperature. Approximating the diffu-
sion prefactor by 10' A /s [2], we obtain an activation
energy of =0.7 eV, which is a reasonable magnitude for
a single atom detaching from a close-packed step. From
MRPC [4] we use D,o = 1.3 X 10 A /s to get the
surface mass diffusion coefficient of Ag adatoms on
Ag(111), D,„c,„=750 s t. Using an upper limit of
0.01% (1%) adatom density in the pit, we get a lower
limit for D,„of 5 X 107 (10 ) A /s. With the prefactor
10' A. /s [2], we get an upper limit for the activation
energy for an atom to diffuse on a Ag(111) terrace of about
0.3 (0.4) eV, again of a plausible order of magnitude.

In conclusion, a Langevin analysis of diffusion of
large islands has been developed. With Monte Carlo
simulations we have illustrated the predictions of the
analysis for surface mass transport. This approach allows
us to measure single-adatom diffusion constants from
observations of large island diffusion.
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