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Spatial Structure and Field-Line Diffusion in Transverse Magnetic Turbulence
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We examine magnetic surfaces and randomization of field lines with fluctuations transverse to a
uniform magnetic field. Analogy with passive scalar transport in inviscid 2D flow provides realizations
of magnetic surfaces and motivates a nonperturbative statistical approach. The stochastic wandering
of magnetic field lines leads to diffusive perpendicular transport. For two-component fluctuations,
appropriate for solar wind turbulence, the diffusion coefficient is a nonadditive combination of slab and
2D coefficients, approaching the latter in the small amplitude limit.

PACS numbers: 47.27.Qb, 52.40.Db, 96.40.Cd, 96.50.Bh

Understanding of the effects of space and astrophysical
plasma turbulence has advanced greatly through the use of
idealized models of turbulent fluctuations. Plasma heating
[1] and transport of turbulence [2] are particularly sensi-
tive to the nature of these fluctuation models, as are the
propagation [3,4] and acceleration [5] of cosmic rays. The
most common assumptions have been that the fIuctuations
admit either isotropic or slab symmetry, the former asso-
ciated with classical turbulence theory and the latter with
linear plasma wave theory. Recently, there has been con-
siderable interest in models with more general rotational
symmetries, motivated by simulations [6,7], magnetohy-
drodynamic (MHD) theory [8,9], and direct observations
[10,11]. These models have had a remarkable effect on
various space [2,12] and astrophysical [13] applications,
in some cases greatly improving correspondence between
theoretical predictions and observations [9,12,14]. How-
ever, little appears to have been done to describe these
fluctuations either intuitively or in terms of the mathemat-
ics of field-line random walk. In this Letter we examine
a family of transverse fluctuation models, focusing on a
description of the wandering and diffusion of magnetic
surfaces, i.e., Aux tubes and field lines. These properties
are contrasted to those of the slab model, the standard in
space and astrophysics for nearly thirty years.

We find that magnetic surfaces experience a rapid
shredding and tangling in composite transverse models.
Thus we see a failure of the common assumption that
fIux tubes, in general, remain identifiable as they tangle
uniformly about a constant guide field. To quantify
this property of the magnetic surfaces, we calculate the
(coarse-grained) diffusion coefficient for field-line random
walk, adapting methods developed for f1uid and guiding
center plasma diffusion (see [15—17] and references
therein). Surprisingly, we find that the small fluctuation
limit of the composite model is the 2D transport result and
not the slab result [4,18,19].

Field lines and Aux tubes are examples of magnetic
surfaces, that is, smooth surfaces in space everywhere
tangent to the local magnetic field B. There is obviously
a large latitude in constructing examples. A simple way

to construct a family of contiguous magnetic surfaces is
using a scalar function n that satisfies B Vn = 0. Each
value of n then specifies a distinct surface; i.e., the surface
n = np is defined by the set of points ix ~ n(x) = np).
The usual practice is to speak of each disjoint part as a
separate magnetic surface.

We are concerned with statistically axisymmetric mod-
els of magnetic fIuctuations b that are transverse to a uni-

form mean field Bp = Bpz. The total magnetic field is
B = Bp + b(x, y, z), and b B = 0. This category in-

cludes slab, 2D, quasi-2D, and two-component models
[10] that include both 2D and slab contributions. In terms
of a vector potential A, (x)i, the magnetic field is

B = Bpz + VAz X z. (1)
Note that the surfaces of A, are magnetic surfaces only
when A, is independent of z.

For transverse fIuctuations, magnetic surfaces satisfy

6n b+ —Vn =0. (2)
Bp

Now consider incompressible 2D How with Quid velocity
v, in which a passive scalar P evolves according to

it t/t + v. VP = 0. (3)
Bf

These two equations are identical under the replacements
n P, t ~ z, and v ~ b/Bp This gi. ves us a conve-
nient method for generating magnetic surfaces in a given
realization of transverse turbulence.

We generate turbulent magnetic fields by specifying a
Fourier representation of A, and weighting each wave-
number component according to the desired spectral
dependence in the model. For most of the remaining
discussion, we separate explicitly the slab component
of fluctuations b"'b(z). In addition, assume that A, =
A, (x~) = A, (x, y) only, giving rise to 2D fluctuations.
For this composite (or two-component) model, the fluc-
tuation is

b = b' (x, y) + b'" (z), (4)
where b (x, y) = VA, (x, y) X z. We shall denote by
6b, 6b, j,b, and 6b2D the root mean square amplitude of
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the total fluctuation, and the slab and 2D components, re-
spectively. The specified modal spectra produce reduced
spectra that are fairly fIat at low k and exhibit a power
law proportional to k ~ at high k. The fluctuations
have Bb = Bo/3 and Gaussian statistics. For a specified
n(z = 0), magnetic surfaces are computed from Eq. (2)
using an adaptation of a Fourier spectral method 2D hy-
drodynamic and passive scalar code.

Figures 1 and 2 illustrate examples of magnetic sur-
faces calculated in this way. In both figures the left plane
is a perspective view of the arbitrary starting function on
the g = 0 plane, and horizontal extension depicts evolu-
tion along the mean field. The spatial structure of the

magnetic surfaces can be discerned by examining their in-
tersections with the slices shown in the simulation cube,
where they appear as curves of constant o. .

Figure 1 represents a composite model with 80% 2D
and 20% slab components of turbulence, this admixture
representing a reasonable model for solar wind turbulence
[12,14]. The boundary value of n on the z = 0 plane
was chosen to be A, (z = 0). This choice is special.
A, describes only the 2D fluctuations and is not a
function of z; surfaces of constant A, are unvarying
cylinders extended along z. Without the slab component,
this particular choice of surfaces of n would have the
same regular property. In contrast, here the evolution
of n is quite involved, and the resemblance to turbulent
mixing and diffusion in two-dimensional hydrodynamics
is obvious.

In Fig. 2 the starting function is chosen without regard
for A„amore general circumstance. We have specified
n(z = 0) —sin(k„x)sin(key), with k, = k,, just below

ko, the break in the turbulent spectrum. The top frame
shows magnetic surfaces for purely slab turbulence. Be-
cause b(z) is the same for all field lines, their wandering

resembles a collection of random walks that occur in lock
step. There is no variation in the pattern of n. It is sim-

ply displaced without distortion.
The middle frame depicts magnetic surfaces for purely

2D turbulence. Unlike the slab case, individual field lines
follow independent paths. The magnetic surfaces fold
and produce finer and finer structure with increased g,
just as an initially smooth passive scalar would become
convoluted and mixed in time. The bottom frame shows
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FIG. 1(color). Magnetic surfaces for a composite model of
80% 2D and 20% slab MHD turbulence. The left plane shows
n(x, y, z = 0) = A (z = 0), the numerical box is a 128' grid,
and colors represent values of the function n.

FIG. 2(color). Magnetic surfaces for top, purely slab tur-

bulence; middle, purely 2D turbulence; and bottom, com-
posite of 80% 2D and 20% slab turbulence. All cases
have n(x, y, z = 0) —sink, xsink~y, with k, = k~ ~ ko the
turnover in the turbulent spectrum.
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the effect of adding slab to 2D turbulence —the surfaces
become convoluted more quickly.

The wandering of magnetic field lines depends on the
statistics of b and is expected to give rise to turbulent
diffusion in analogy with hydrodynamics. [Eqs. (2) and

(3) are ideal, but the coarse-grained variables [20] are
expected to exhibit diffusion]. In the passive scalar
problem, the eddy diffusion coefficient is expected to
be of the order of uA, where u is the typical turbulent
velocity and A = the correlation length. According to
the analogy between magnetic surfaces and Eq. (3), we
expect the effective field-line diffusion coefficient to be
Di = ABb/Bo, where A is some appropriate large length
scale.

The diffusion coefficient D~ for n can be defined to
describe the randomization of n in the (x, y) plane as

z changes, corresponding to the diffusion coefficient for
perpendicular wandering of magnetic field lines [4,18,19].
For self-diffusion of fIuid elements, it is found by inte-
grating the Lagrangian correlation over the full trajectory
[16,17]. Here, the displacements are proportional to the
components of 8, from which

((~ )')
4hz 2 ll

d
(b(xi(z), z).b(o, o))

dZ 2
Bp

(5)
The angle brackets denote an ensemble average, and the
statistics are assumed to be homogeneous. Jokipii and
Parker [4,18,19], in effect, started with this expression
but neglected dependence of the integrand upon x ~ when
66 « Bp, reducing it to the Eulerian form. Their result
is exact for the slab model.

We consider diffusion for the slab and 2D composite
model given by Eq. (4). Because slab and 2D fluctuations
are uncorrelated (orthogonal under ensemble averaging),
the integrand in (5) can be separated additively into
slab and 2D contributions. However, field-line statistics
appear on the right hand side of Eq. (5), so the net
diffusion coefficient will not simply be the sum of two
independent terms.

The slab term follows immediately from the definition
of the parallel correlation length, A, and 6b, ~,b,

(b slab (Z) .b slab (0))
dz = Dslab ~ (6)

p 2Bp 2Bp
This is Jokipii and Parker s result [4,18,19].

To calculate the contribution from 2D fluctuations,
we employ key elements of the approach used by
Montgomery and co-workers [15,17]. First, express the
relevant terms in Eq. (5) in a Fourier representation in the
perpendicular coordinate,

(b' ( .(.)) b"(o)) = P(lb' (I.)l"'" " "). (7)
k

Note that the manipulations are in the region of infinite
extent in z but enclosed by a finite box in the (x, y) di-
rections. The amplitude ~b (ki) ~

of the 2D fluctua-
tions, with wave number k i satisfying k~.z = 0, would

1 y (Ib' (&i)l')
2 k Bp

2

The quantity

2
—k~Dgz d

D2o
Dg

(10)

D2r) =
2kiB

is, by virtue of the analogy between (2) and (3), essen-
tially identical to the diffusion coefficient for case (i) in
Ref. [17], the coefficient of self-diffusion in "frozen-in"
2D turbulence. In the present case, if the slab component
vanishes, the perpendicular field-line diffusion coefficient
would be Dg = D2g.

For the composite model, we assemble the contribu-
tions from (6) and (10), and find the relation Di =
D2D/Di + D, l, b, the solution of which is

2 2
Dslab + Dslab + 4D2D

(12)

Note that we can write the 2D diffusion coefficient
at D2D = Bb2DA/Bo, where A is now defined by the
ki weighting of the spectrum in Eq. (11). This should
be comPared to the slab result, D»ab = Bbslabkz/2BO
Suppose that we fix the ratio of slab to 2D fluctuation
energy, as well as the ratio of A, to A. The immediate
conclusion is that, in the limit of small fluctuation
amplitude, Bb/Bo ~ 0 and Di ~ D2D. Thus, for the
two component model, the 2D diffusion result is the
proper small amplitude limit.

The general case of transverse fluctuations can now be
treated. We begin again with Eq. (5) but now pass to the
limit of an infinite domain in all three coordinates. For
a large box of side L, the field-line diffusion coefficient
becomes

O~ = lcm
L—+Do

lb(I )I' i [ ~kx, (z ) + kz z ]

k 28p
'

become the spectrum after ensemble averaging. The sta-
tistics of the magnetic fluctuations can be separated from
those of the individual trajectories by using Corrsin s hy-
pothesis [17,21], which implies

2D(p )~2 eik~ x~(z)) ((b2D(Q ))2) (eik~ x~(z)) (8)

This separation rejects the fact that the random trajectory
x J (z) = (x(z), Y(z)) is highly irregular and sensitive to
phases of the magnetic fluctuations, and not just the
spectrum. A second key step [17] is to assume that
&(z) and y(z) are identically distributed but uncorrelated
Gaussian random variables, from which it follows by
expansion of the exponential and the definition of the
diffusion coefficient that

ik~ x~(z]) —k~DJ z

Integrating over z gives the two-dimensional contribu-
tion to the diffusion coefficient
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In parallel to the development above, we employ
Corrsin's hypothesis [17,21]. In this case we pass to the
limit L ~ ~, adopt a Fourier integral representation, and
designate the magnetic spectral density of the fluctuations
as S(k), where Bb = f d3k S(k). Again, assuming
that the random displacements x~(z) are described by a
diffusion process with Gaussian statistics; Eq. (13) then
reduces to

(15)

D~ = d'/r. e ' " '"'d~. (14)
S(k)
28

Integration in z yields an integral equation

S(k) ki
280 (DikJ )2 + g2

'

which determines the diffusion coefficient D~ for trans-
verse magnetic fluctuations with arbitrary spectral dis-
tribution. It shares with other formal expressions for
diffusion coefficients [such as Eq. (11), see also [16,17]]
a sensitivity to power at extremely long wavelengths be-
cause of the inverse weighting in wave number. It is also
straightforward to show that the solution to Eq. (15) for
the slab and 2D composite model reduces to the expres-
sion in Eq. (12).

In conclusion, we find that transverse fluctuation mod-
els that are more general than the slab model produce
magnetic surfaces that tangle and shred along the guide
field direction. The orderly weaving of identifiable Aux

tubes about the mean field, a familiar conclusion from the
slab model, does not occur in general. The spatial behav-
ior of transverse fluctuations is analogous to the ideal tur-
bulent diffusion of a passive tracer in 2D incompressible
hydrodynamics. Motivated by this analogy, we derive a
perpendicular field-line diffusion coefficient by employing
statistical methods [17] that involve no expansion in small
parameters. The result for a slab and 2D two-component
model, such as is appropriate to the solar wind, is a dif-
fusion coefficient very different from the standard slab
result [4,18,19], even in the small amplitude limit. Fur-
ther generalizations of these methods are expected to have
consequences for scattering and transport of high energy
charged particles in astrophysical plasmas.
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