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D. Bonn,! H. Kellay,> M. Ben Amar,! and J. Meunier!

'Ecole Normale Supérieure, Laboratoire de Physique Statistique, 24 Rue Lhomond, 75231 Paris Cedex 05, France
2Centre de Physique Moleculaire Optique et Hertzienne, Université Bordeaux 1 351, Cours de la Libération,
33405 Talence, France
(Received 1 March 1995)

We study the viscous fingering instability which results from a competition between capillary and

viscous forces.

We show that for two different systems the instability is modified drastically by

changing the surface tension or viscosity by means of surfactants or polymers. For both systems the
width of the finger can increase with increasing velocity before settling at a plateau value larger than
half the channel width. A numerical study shows that the large deviations from the classical result can
be attributed to a velocity dependence of the dynamic interfacial tension and viscosity.

PACS numbers: 47.20.Hw, 61.25.Hq, 68.10.-m,

The Saffman-Taylor instability [1] arises when a less
viscous fluid pushes a more viscous fluid in a thin linear
channel or Hele-Shaw cell. The interface between the
fluids develops an instability leading to the formation of
fingerlike patterns, called viscous fingers. It has received
much attention as an archetype of pattern-forming systems
[2], a model system for flow through porous media [1],
and as a limiting factor in the recovery of crude oil [3].
The problem originates from the oil industry: Petroleum
engineers reported “tongues of water in o0il” in secondary
oil recovery.

The width of the viscous fingers is determined by the
capillary number Ca = AuU /7y, which represents the ra-
tio of viscous forces to capillary forces: Au is the vis-
cosity difference, U the finger velocity, and 7y the surface
tension. The viscous forces tend to narrow the finger,
whereas the capillary forces tend to widen the finger. As
a result, the width of the finger w relative to the chan-
nel width W, A = w/W, decreases with increasing finger
velocity. For large values of the capillary parameter, A
reaches a limiting value of about % [1,2]. The dimen-
sionless control parameter is 1/B = 12 Ca(W/b)?, where
b (= 025 mm,W = 4 cm) is the distance between the
plates of the Hele-Shaw cell. When scaled on 1/B, mea-
surements of A for different systems all fall on the same
universal curve. Changing the viscosity or surface ten-
sion thus only leads to a displacement on the universal A
vs 1/B curve. We show here that for two different com-
plex fluids, by acting on the surface tension and viscos-
ity, results are obtained that differ greatly from the classi-
cal result.

In the first experiment, a surfactant is present at the
interface between water and an oil. The anionic surfactant
AOT is dissolved in pure water at concentrations above
the critical micellar concentration (CMC = 2.5 mM) so
that the interface is covered with a saturated surfactant
monolayer. The less viscous, driving fluid is heptane.
Figure 1(a) depicts the results for two AOT concentrations.
The surprise is that the finger width settles at a plateau
value significantly above the classical A = 5 value. For
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the 3 mM AOT solution, it can be observed that A goes
through a minimum and then increases before reaching a
high-velocity plateau value.
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FIG. 1. The relative width of the finger as a function of the
finger velocity. The symbols are the experimental results and
the drawn lines are the result of the numerical calculations.
(a) For the oil/water/surfactant system for 3 mM AOT (open
circles) and for 15 mM (filled circles). Also shown is
the classical result for a water/glycerol mixture with air as
the driving fluid (triangles). (b) For the polymer solution,
20 wppm (closed circles) and 500 wppm (open circles).
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In a second experiment, we use a polymer solution
of polyethyleneoxide (Polyox WSR 301, M =~ 4 X 10°
a.m.u.) in water as the fiscous fluid and compressed air as
the less viscous, driving fluid. In Fig. 1(b), we show two
measurements; we again find plateau values with A > %
and also, for the more concentrated polymer solution, a
finger width that increases with increasing velocity.

Figure 2 shows the shape of three observed fingers com-
pared to the classical result for the form of the finger. For
the surfactant system, the form of the observed fingers
agrees well. However, for the polymer solution at low ve-
locities narrow, pointed fingers are found. For somewhat
higher velocities we observe blunt and wider fingers.
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FIG. 2. The shape for three of the observed fingers with ap-
proximately the same limiting width compared to the classical
result for the form of the finger with inclusion of surface ten-
sion effects, shown here as the dots. (a) For the surfactant
system, the form of the fingers is in agreement with the clas-
sical theory. (b), (c) Two fingers for the 500 wppm polymer
solution [corresponding to the measurement in Fig. 1(b)] with
velocities 0.7 and 1.3 cm/s, respectively.

The experimental observation then is that for the two
completely different systems the results are very similar
and deviate strongly from the classical result: Stable,
very large fingers can be obtained. This deserves some
attention, since in previous experiments either narrow
[4,5] or unstable fingers [6] were found by disturbing
the finger. Also, the form of the fingers for the polymer
solution is aberrant. How can these results be understood?

First, consider the surfactant system. The presence of
a surfactant film at the interface between the oil and water
introduces supplementary restoring forces, caused by the
advection of surfactant molecules from the tip to the
sides of the finger by the hydrodynamic flow [7]. This
results in a dynamic surface tension at the tip which is
higher than the equilibrium tension and increases with
velocity. The finger reaches a steady state as neither
its form nor its width changes during the experiment.
The nonequilibrium adsorption I' can then be calculated
from the equation for mass conservation for the interface
[7]: div(I'U,) = —Ddc/dz; here the first term accounts
for the convection of the surfactant molecules by the
(tangential component of) hydrodynamic flow U,, and the
second term accounts for the diffusion from the bulk to
the interface. D is the bulk diffusion coefficient, and the
concentration gradient is in the direction perpendicular to
the interface [7]. We have neglected the surface diffusion
of the surfactant molecules, which is usually very small.
Assuming not too large departures from equilibrium, the
local surfactant concentration can be written I' = I',[1 —
(1/a)dU,/dS], with S the dimensionless arclength and
a a characteristic velocity for the diffusion of surfactant
molecules from the bulk to the surface. Expanding
the surface tension around its equilibrium value, we
obtain a dynamic tension y = vy, + dy/dI'(I' — T,);
the subscript e denotes an equilibrium value [8], and
Ye = 2 mN m~! for this system.

For the polymer solutions, we measured the surface ten-
sion using the Wilhelmy ring method. We find y = 63 =
0.5 mN m~! virtually independent of the polymer concen-
tration over three decades in concentration: 1 < ¢ < 1000
wppm. Thus there is an effect of polymer adsorption (a
14% change with respect to the surface tension of wa-
ter), but it is small and concentration independent. The
observed effects, on the other hand, are rather large and
concentration dependent. We believe the more important
effect to be that the polymer solution is a shear thinning,
i.e., a non-Newtonian liquid (its viscosity depends on the
local shear rate w). The main shear in the Hele-Shaw
cell occurs in the direction perpendicular to the plates;
the shear rate can be estimated as the fluid velocity V
divided by the plate spacing, w = V/b. One may at-
tempt to model w in terms of a single relaxation time
w(w) = e + (o — p)/(1 + w?72), where 7 repre-
sents the largest relaxation time in the system, i.e., the
Zimm relaxation time of the polymer [9]; wo and uo are
the zero- and infinite-shear viscosities.

2133



VOLUME 75, NUMBER 11

PHYSICAL REVIEW LETTERS

11 SEPTEMBER 1995

With these simple models, we proceed by a direct nu-
merical integration of the two-dimensional hydrodynamic
equations, with the local tension (surfactants) or viscos-
ity (polymers) as given above. We adapt the McLean-
Saffman method [10]. For the surfactant system the
calculations are straightforward, since only the local sur-
face tension has to be modified compared to the standard
case [11]. For the polymer, however, the local viscosity
now depends on the local hydrodynamic velocity. As a
consequence, the velocity field is no longer Laplacian. It
can, however, be shown that the pressure field remains
Laplacian so that the conformal mapping techniques [10]
can be applied to this field, which entails a modification
of the continuity equation [12]. Only the one adjustable
parameter is added to the standard problem in this way:
the amplitude of the effect determined by dy/dT" for the
surfactants and by the ratio po/p« for the polymer. The
results of the calculation are shown as the drawn curves in
Fig. 1, from which it may be concluded that these simple
models reproduce the essential physics of the problem.

The pertinent question is then whether the parameters
[13] that were varied to fit the data make any phys-
ical sense. The results are shown in Fig. 3. For the
surfactant system we obtain roughly @ = 0.1 cm/s and
I./yedy/dl' = 1073, The parameter « gives the flux
of surfactant molecules from the bulk to the surface.
Knowing the bulk diffusion coefficient [7], and writing
the concentration gradient as a typical concentration dif-
ference (of the order of the bulk concentration) over a
characteristic diffusion length &, one obtains § = 10 um,
which seems to be of the right order of magnitude [7].
The relation between the surface tension and the adsorp-
tion I', /v, dy/dT = 1072, in principle, provides us with
an equation of state for the surfactant system. However,
comparing with, for instance, the two-dimensional gas
equation of state, one finds that a typical value would
be on the order of unity. There can be a number of
reasons for this large discrepancy. First, in making this
comparison the (perhaps too strong) assumption is that lo-
cally the equilibrium relation between the surface tension
and adsorption still applies. Second, in the hydrodynamic
calculation three-dimensional effects have been neglected.
Although this is usually a fairly good approximation [14],
it may be that the presence of the surfactant alters this. A
third possibility is, of course, that our model for the sur-
factant advection may be oversimplified; the fairly good
agreement with experiment, however, does not appear to
be not entirely fortuitous.

For the polymer solution [Fig. 3(b)], the values for the
viscosity are of the correct order of magnitude; typically,
we find o = Spwater and oo = 0.5 water- The rather
large differences with the viscosity of water (at the low
concentrations of polymer) are most probably related to
the drag-reducing properties of the polymer. It is well
known that solutions of these polymers can have, for
instance, an elongational viscosity that is a hundred times
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FIG. 3. The results of the fitting procedure. (a) For the

surfactant system; the open circles denote the characteristic
velocity for the arrival of surfactant molecules « and the filled
circles give the derivative of the tension with respect to the
adsorption. (b) For the polymer system; filled circles are for
the zero-shear viscosity o and the diamonds are for the infinite
shear viscosity pe.. The drawn line is the viscosity of water.
The inset shows the relaxation time 7 (units 1073 s) as a
function of the polymer concentration (units wppm).

that of the solvent, and they can exhibit drag reduction at
the same time [9]. The relaxation time of the polymer is
also of the correct order of magnitude. Calculating the
Zimm relaxation time of the polymer, 7, = 3R3,u/kBT,
with kp the Boltzmann constant and 7 the temperature,
with a (hydrodynamic) radius R = 0.2 um determined
from light scattering, we find 7, = 6 X 1073 s. It is
surprising that 7 appears to be concentration dependent.
For the highest concentrations, it may be that there are
some entanglement effects [9]. However, it may also be
that, again, the model we have used is somewhat too
simple. In the similar experiment of Smith et al. [5],
narrow (rather than wide) fingers were obtained. These
can also be found in our calculation; compared to the
present experiment, they occur for a smaller ratio o/ .

These results suggest a simple physical interpretation of
our observations. The first-order effect of the introduction
of a dynamic viscosity or tension is qualitatively the same
for both systems: The capillary number Ca = uU/y
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will no longer be a simple linear function of the finger
velocity U, since y or u depend on U this will weaken the
dependence of Ca on U. When the velocity dependence
of y or u annihilates the dependence of Ca on velocity,
it does not change anymore by changing the velocity.
As there is a unique value of A assigned to each value
of Ca through the selection mechanism [13], this gives
rise to the plateau values observed in the experiment.
Moreover, this also explains the striking similarity of
the findings for the two different systems. Of course,
anisotropy effects [4] should also be taken into account.
The experimental observations then point to the fact that
the velocity dependence of the capillary number has been
annihilated effectively by dynamic tension or viscosity and
anisotropy effects.

The final question concerns the form of the fingers. For
the surfactant system, anisotropy effects [4] are probably
not very important. For the polymers, the viscosity de-
pends on the local shear rate, which varies along the finger.
For low velocities [Fig. 2(b)], the larger viscosity gradient
is near the tip so that the forward direction is a direction
of “easy growth,” which then leads to smaller and more
pointed fingers [4,5]. For higher velocities [Fig. 2(c)], the
effect saturates at the tip. The gradient is largest at the
sides of the finger, which “grow” more easily; blunt and
wider fingers are found. The finger forms from our calcu-
lation reproduce this effect qualitatively, but are close to
the classical form, which points to the possible importance
of three-dimensional effects.

In conclusion, we have shown that the viscous fingering
instability is modified drastically when one uses complex
fluids to act on the surface tension or viscosity. The
effects on the instability can be understood in terms
of a velocity dependence of the dynamic tension or
viscosity. Moreover, we have shown that the above
findings may be applicable to determine the dynamic
surface tension or viscosity simply by measuring the
width of the finger: The instability could be used to
obtain material properties of the system. Finally, the
stable, very large fingers that we found were part of the
original motivation for studying the instability; larger and
more stable fingers improve the efficiency of oil recovery.
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