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Reducibility and Thermal Scaling of Charge Distributions in Multifragmentation
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A strong thermal signature is found in the charge distributions associated with multifragmentation
from the reaction 36Ar + '97Au at E/A = 110 MeV. The n-fold charge distributions are reducible to
the onefold charge distributions through a simple scaling that is dictated by fold number and charge
conservation.

PACS numbers: 25.70.Pq

Historically the charge (mass) distribution has played
and still plays a very important role in multifragmentation.
Since the inception of the studies on this subject, the near
power-law shape of the charge and mass distributions was
considered an indication of criticality for the hot nuclear
fluid produced in light ion and heavy ion collisions [1,2].
More modern studies still infer critical behavior from the
moments of the charge distribution [3—8]. Furthermore,
a charge distribution is readily predicted by most models
and easily testable.

Recently, it has been experimentally observed in
Ar + ' Au reactions that for any value of the trans-

verse energy E, the n-fragment emission probability P„
is reducible to the one-fragment emission probability p
through a binomial distribution [9]
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This empirical evidence indicates that multifragmenta-
tion can be thought of as a special combination of nearly
independent fragment emissions. The binomial combina-
tion of the elementary probabilities points to a combi-
natorial structure associated with a timelike or spacelike
one-dimensional sequence. It was also found that the log
of such one-fragment emission probabilities (logp) plot-
ted vs I/~E, (Arrhenius plot) gives a remarkably straight
line. This linear dependence is strongly suggestive of a
thermal nature for p,

weakly (polynomial) dependent on Z then
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and therefore p retains the form of Eq. (2).
These aspects of reducibility and thermal scaling in the

integrated fragment emission probabilities lead naturally
to the question: Is the charge distribution itself reducible
and scalable? In particular, what is the charge distribution
form that satisfies the condition of reducibility and of
thermal dependence? Strong hints of this are seen when
the lower Z cutoff is increased in the intermediate
mass fragment (IMF) definition. The resulting fragment
multiplicities are still binomially distributed and the
Arrhenius plots become steeper in accordance with the
barrier B in Eq. (2) increasing with Z.

In what follows we will show that experimental charge
distributions do, in fact, show most interesting reducibility
and thermal scaling properties.

Let us first consider the aspect of reducibility as it
applies to the charge distributions. In its broadest form,
reducibility demands that the probability p (Z), from
which an event of n fragments is generated by m trials,
is the same at every step of extraction. The consequence
of this extreme reducibility is straightforward: the charge
distribution for the onefold events is the same as that for
the n-fold events and equal to the singles distributions,
i.e.,

P(i)(Z) = P(„)(Z) = P„„s(„(Z)= p(Z).

under the assumption that the temperature T ~ QE*
where E* is the excitation energy. These observations
were made with data integrated over a broad range of
fragment atomic numbers (3 ~ Z ~ 20). The difficulty
of a thermal interpretation of the probability p averaged
over Z was tentatively resolved by observing that if B is P(Z) '(')t' (5)

We now consider the consequences of the thermal
dependence of p [9] on the charge distributions. If the
onefold = n-fold = singles distributions is thermal, then
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or T lnP(Z) ~ B—(Z). This suggests that, under the
usual assumption E, ~ E* [9], the function

~E, lnP(Z) = D(Z)
0.40—

Ar+ Au, E/A=110 MeV

should be independent of E, .
In the Ar + ' Au reaction considered here, as in

other reactions [10,11], the charge distributions are em-
pirically found to be nearly exponential functions of Z,

0.35—

0.30—
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P„(Z) ~ e (7)

as shown in Fig. 1. In light of the above considerations,
we would expect for o.„ the simple dependence
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for all folds n Thus. a plot of cr„vs I/~E, should
give nearly straight lines. This is shown in Fig. 2 for

Ar + Au at E//I = 110 MeV.
The expectation of thermal scaling appears to be met

quite satisfactorily. For each value of n the exponent
n„shows the linear dependence on I/~E, anticipated
in Eq. (8). On the other hand, the extreme reducibility
condition demanded by Eq. (4), namely, that nI = nz =
~ -. = n„= e, is not met. Rather than collapsing on a
single straight line, the values of n, for the different
fragment multiplicities are offset one with respect to
another by what appears to be a constant quantity.

In fact, one can fit all of the data remarkably well,
assuming for u„ the form

Ar+ Au, E/A=110 MeV

~ + nc, (9)

which implies

K= —+ nc, (10)

or, more generally, for the Z distribution

P (Z

FIG. 2. The exponential fit parameter „cr[fr mofits to the
charge distributions, see Eq. (7)] is plotted as a function of
I/~E, The sol.id lines are a fit to the values of n„using
Eq. (9).
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I I I I Thus, we expect a more general reducibility expression
for the charge distribution of any form to be

1O-' = [InP„(Z) + ncZ]]~K, = F(Z)
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FIG. l. The n-fold charge distributions P„(Z) for intermedi-
ate mass fragments (IMF: 3 ~ Z ~ 20) are plotted for the in-
dicated cuts on transverse energy F., and IMF multiplicity n.
The width of the cuts AF, is 37.5 MeV. The solid lines are
exponential fits over the range Z = 4—20.

for all values of n and E, . This equation indicates that it
should be possible to reduce the charge distributions as-
sociated with any intermediate mass fragment multiplicity
to the charge distribution of the singles. As a demon-
stration of this reducibility, we have compared P„(Z) and

F(Z) in Figs. 1 and 3. Figure 1 compares three charge
distributions for different cuts on E, and n; their slopes
are clearly different. The reduced quantity F(Z), on the
other hand, collapses to a single line in Fig. 3.

We stress that the reduced quantity in Eq. (12) is in
dependent of the functional form of the charge distribu-
tion. However, we have used the fact that the charge
distributions are well described by exponential fits in the

Ar + ' Au reaction to summarize the reducibility of an
enormous amount of data. Nearly one hundred different
charge distributions are represented in Fig. 2. We feel this
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Ar+ ' Au, E/A= 110 MeV
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where the Lagrange multipliers K and y are associated
with the constraints

nzZ = Zp, Pnz ——n (16)
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The constraints now read

Z = Z
e

From the extremization we obtain
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FIG. 3. The "reduced" charge distributions [see
plotted for the same cuts on E, and n as Fig. 1.
data sets are normalized at Z = 6. The value of
the spacing between the curves shown in Fig. 2.

Eq. (12)] are
The different
c = 0.016 is

from which

—KZ —y

n —nz/Z0e
Zp

(2o)

(21)

is equally as impressive as the reducibility demonstrated
directly in Figs. 1 and 3, where for practical purposes we
are only able to demonstrate reducibility for a few differ-
ent charge distributions.

What is the origin of the regular offset that separates the
curves in Fig. 2? The general form of Eq. (11) suggests
the presence of an entropy term that does not depend
explicitly on temperature. The general expression for the
free energy (in terms of enthalpy H, temperature T, and
entropy S)

AG = AH(Z) —TAS(Z) (13)

leads to the distribution

P (Z) [AH(zy/T]+65— (14)

e = eI [&z Innz —&z]+&g nzZ+ y g nz (15)

Typically, AS is of topological or combinatorial origin.
For instance, a factor of this sort would appear in the iso-
merization of a molecule involving a change of symmetry.
In our specific case b, S may point to an asymptotic com-
binatorial structure of the multifragmentation process in
the high temperature limit. As an example, we consider
the Euler problem of an integer to be written as the sum
of smaller integers, and calculate the resulting integer dis-
tribution. Specifically, let us consider an integer Zp to be
broken into n pieces. Let nz be the number of pieces of
size Z. The most likely value of nz can be obtained by
extremization of the function [12]

This expression has the correct asymptotic structure for
T ~ ~ required by Eq. (11). The significance of this
form is transparent. First, the overall scale for the
fragment size is set by the total charge Zp. Second, for a
specific multiplicity n, the scale is reduced by a factor n
to the value Zp/n

Thus the offset introduced in Eq. (11) with increasing
the multiplicity n may just be due to this scale reduction.
If this is so, the quantity c in Eq. (11) takes the meaning
c = 1/Zp. The empirical value from Fig. 2 is c = 0.016,
which corresponds to a value of Zp = 60 which is quite
reasonable for the source size.

The implications of the experimental evidence pre-
sented above are far reaching. On the one hand, the
thermal features observed generally in multifragmentation
(thermal population of bound and unbound [13,14] excited
states and slope parameters of Maxwell-Boltzmann veloc-
ity spectra [15]; for a review see [16]) and specifically
in the n-fragment emission probabilities for the 3 Ar +
'97Au reaction [9] extend consistently to the charge dis-
tributions and strengthen the hypothesis of phase space
dominance in multifragmentation. On the other hand, the
reducibility of the n-fold-event charge distributions to that
of the singles distribution highlights the near indepen-
dence of individual fragment emission, limited only by
the constraint of charge conservation.

In summary, we have found for multifragmentation pro-
duced in the 3 Ar + '9 Au reaction at E/A = 110 MeV
(1) strong evidence for a thermal scaling of the Z distri-
butions; (2) reducibility of the n-fold distributions to the
onefold distributions through Eq. (11); and that (3) the
structure of the reducibility equation is essentially given
by a simple rescaling associated with the multiplicity and
the source size.
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