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"Negative-Viscosity" Effect in a Magnetic Fluid
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The first experimental evidence of a "negative-viscosity" effect in a magnetic fiuid is presented
here. In a Poiseuille flow, a constant magnetic field balances vorticity and impedes the rotation of
individual magnetic particles. Conversely, an alternating magnetic field helps vorticity and favors this
rotation: The magnetic energy is partially transformed into the angular momentum of the particles,
which in turn is converted into a hydrodynamic motion of the Quid. It manifests itself in a decrease of
the total viscosity: Its rotational part becomes negative. The theory developed here corroborates the
experimental results.

PACS numbers: 47.15.—x, 75.50.Mm, 83.85.Jn

Magnetic fluids (MF) [1] are colloidal solutions of
magnetic nanoparticles in a fluid carrier. The ability of
the suspended solid particles to rotate with respect to the
surrounding liquid leads to the spectacular behavior of MF
in alternating, circularly or linearly polarized magnetic
fields [2—5]. A mean angular velocity of the particles,

is determined by the condition of magnetic and
viscous torques balance [1,6]:

6rlp(cop —A) = M X H.

So the magnetic torque supports some difference between
1

and the angular fluid velocity A =
z curl&. In

Eq. (1), M and g are the MF magnetization and viscosity
and p is the volume fraction of particles. Thus, the
magnetic field H "switches on" an additional viscous
friction, which manifests itself as an additional (rotational)
viscosity Ag. One can show [4] (see below) that the
rotational viscosity may be presented in the form

fl top3
'9 = (2)

A constant field always impedes free particle rotation
(with the angular velocity II), so co„( II and Arl ~ 0.
Inverse inequalities are impossible on thermodynamic
considerations because a constant field (which can be
created by a permanent magnet) cannot produce any work.

Another situation takes place in an alternating linearly
polarized magnetic field. In a quiescent MF (A = 0), such
a field induces rotational swings of the particles but does
not single out any preferable direction of their rotation.
Therefore an averaging over a physically small element of
volume results in co„= 0. Any vortex flow (B 4 0) is
sufficient, however, to break down the degeneracy of the

rotation direction of the particles and leads to a nonzero
macroscopic co„. A slow oscillating magnetic field (just
as a constant one) impedes free particle rotation, so 5 rl )
0. Conversely, a fast enough oscillating field forces the
particles to rotate faster than the fluid: co„)A. As a
result the particles spin up the flow, so the vortex flow
rises up at the expense of the particle spinning, which in
turn originates from the alternating magnetic field. This
transformation of a part of the alternating field energy into
kinetic energy of the fluid just manifests itself in a certain
reduction of the total viscosity. Below, this viscosity
reduction is named the negative viscosity eff-ect: Arl ( 0.
In this paper we describe some experiments devoted to
showing the different regimes of the rotational viscosity
(Ag ~ 0 or (0) as a function of the amplitude Ho and
the frequency cu of the field.

The magnetic fluid used here is chemically synthesized
through Massart's method; the magnetic material of the
colloidal particles is Co-ferrite with a magnetic anisotropy
constant K = 2 X 106 ergs/cm3, a grain magnetization
M, = 400 G, and the typical size of particles of 10 nm.
This large anisotropy constant induces a rigid dipole
behavior of the particles, which means that the magnetic
moment is frozen into the particles up to magnetic fields
of 10 Oe. In order to maximize the experimental effects,
we use a concentrated ferrofluid in water with a volume
fraction of 20%. A Poiseuille flow in a horizontal
capillary tube (d = 1 mm for the diameter) is used for
viscosity measurements. The gradient of pressure is given
by the difference of the MF level h between the inlet and
outlet of the tube. The massic flow rate Q is measured
by a numerical weighter at the outlet of the tube. This
tube is put inside a solenoid which provides a magnetic
field parallel to the flow direction up to H = 1 kOe at
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a frequency f = ro/27r varying from 0 to 1 kHz. The
massic fiow rate Q is measured as a function of the
pressure drop given by h. Figure 1 presents the variations
of Q as a function of h for static fields H = 0 and
2000 Oe. The two straight lines establish that the MF has
a Newtonian behavior with and without magnetic field and
the slopes give the viscosity.

For the orders of magnitude, the viscosity of the solvent
is 1 cP (water), with a volume fraction of particles of 20%
this viscosity grows up to 77 cP in zero field and up to
220 cP under a static field of 2000 Oe. Despite its large
viscosity, our MF is Newtonian.

In Fig. 2, we plot for different frequencies the value of
the reduced viscosity

n. (H, f) = ~n/n(0, 0) = ln(H. f.) —n(0, 0)]/n(0. 0)

as a function of the applied magnetic field. For a
static magnetic field, the reduced viscosity il „(H, 0)
increases monotonously towards an asymptotic value
zl„(~, 0) in high fields; this fact has been first pointed
out experimentally by McTague [7] and theoretically
explained by Shliomis [6]. Here iI„(~,0) = 2.5.

At 52 Hz, the curve has more or less the same shape as
for f = 0 with a maximum in high fields. At 130 Hz the
shape of the curve becomes different; g„ first decreases,
becomes negative, goes through a minimum, and only
increases up to a supposed asymptotic value. For higher
frequencies, the behavior is the same; the higher the
frequency the more negative the minimum. At 1480 Hz,
our apparatus does not permit us to obtain field values
higher than 800 Oe. For H —2000 Oe, the viscosity
decreases from 220 to 100, 77, and 58 cP, respectively,
for 50, 250, and 700 Hz.

In conclusion, with this Newtonian Quid we observe
a decrease of the rotational viscosity as a function of

dM 1=& X M ——(M —Mp)—
dt 7 g 6@v

1
M x (M x H),

(4)

where rii = 3rlV/kT is the Brownian relaxation time for
the particles of volume V (kT is the thermal energy) and
Mp(t) = pM, L($)h is the "instantaneous equilibrium"
magnetization that would exist in given H(t) at ra =
0, i.e., if the magnetization followed the field without
retardation; in the Langevin formula L($) = cothg-

', g = mH(t)/kT, m = M, V is the magnetic moment
of the particle, and h is the unit vector along the applied
field.

Our experimental data agree with the theory [5] on
the whole, but there are some substantial discrepancies
in details. So, the theoretical dependence of Aq(g) has a
maximum at ~v.p & 1 and has no minimum at co~~ ~ 1

(see Fig. 4 in [5]), whereas in experiment we observe an
inverse situation (see Fig. 2 in this paper). The matter
is that the phenomenological magnetization equation (4)
is working well for arbitrary intensity of a stationary
magnetic field (see, e.g. , a good agreement between Mc-
Tague's experiment [7] and Shliomis's theory [6]) or for
small amplitude and frequency of an alternating field.
However, for finite values g and curit one must use a
more rigorous magnetization equation. Such a macro-
scopic equation was derived [8] from the Fokker-Planck

the frequency from Azl = 143 cP at f = 0 down to
5 zl = —19 cP at f ~ 700 Hz.

The first prediction of the negative-viscosity effect [5]
was founded on a combined solution of the hydrodynamic
and magnetodynamic equations [6]

dv 1
p = —V'p + (MV)H + ilk' + —curl(M X H),

dt 2
(3)
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FIG. 1. Experimental massic flow Q as a function of h, the
difference of MF level between inlet and outlet: ~: 0 =
0, rl = 77 cP; ~: H = 2200 Oe (static field), rl = 220 cP.

FIG. 2. Experimental reduced viscosity rl„(H, f) =
(rl(H, f) —g(0, 0)]/rI(0, 0) versus magnetic field H for differ-
ent frequencies f:~:f = 0; ~:f = 52 Hz; L:f = 150 Hz;
C':f = 345 Hz; +:f = 645 Hz; and 4:f = 1480 Hz. Full
lines are guides for the eye.
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equation for rotary diffusion of colloidal particles with as-
sistance from the effective field method [9]. According to
this method, the nonequilibrium actual magnetization is
considered to be the equilibrium one:

0.8

0.6-

M = WMsL($ )4 /g

in the "effective field" g, . The latter is determined as a
function of true field g = mH/kT and IIow vorticity A
by [8]

d g'1 gl 1 L,—L, —' i=n X
dt 'g, ) 's, )

'~g, X(Q, XQ),2rtig $, )

0.2-

g 0

-0.2-

-0,4
0 12 16 20

where L, = L(g, ) Equat. ions (5) and (6) determine M
in a parametric form, with the effective field g, being the
parameter. Solutions of Eqs. (4) and (6) are close to each
other only for a constant or a slow oscillating magnetic
field.

Our problem contains a small dimensionless parameter
Gati. Indeed, a transient birefringence experiment [10]
gives for the present MF 7.& —1.6 ms, so the inequality
Alii « 1 is satisfied for a vorticity A smaller than
60 s ', which is always verified in our experiment. For
small Arri a solution of Eqs. (3) and (6) may be found
by the theory of perturbation. The effective field g, is
determined by the equation of zero approximation:

dg,
~

dl L, '1 $p

dt (ds, ) $, )'
where gp = mHp/kT is defined over the amplitude of the
field. In the linear approximation in Arri, Eq. (6) yields
M('I = M( )F($ )re& X h, where M( ) = pMsL($, )
and the function F is determined by

dF = 1 ——
i

——gpF cosrdt. (8)
dt 2 kL,

FIG. 3. Theoretical variations of g(s p, cu rz) =
rt„(sp, adrs)/rt„(~, 0) for different values of Cdrri between 0.1

and 2.

3
Thus the rotational viscosity is 5 rj =

2 rt pg. According
to Eqs. (1) and (9), the angular velocity of the particles
may be written as co~ = (1 —g)A. So Art can be
presented in the form (2).

For arbitrary values of the field amplitude and fre-
quency the problem is solved numerically. The proce-
dure includes a numerical solution of the system of two
differential equations (7) and (8) and a numerical com-
putation of the integral over period in (9). For pre-
scribed gp and cdrB those equations are solved by the
fourth-order Runge-Kutta method under the initial con-
ditions s, = sp and F —0 at t —0. The results of
the computations are displayed in Fig. 3, which presents
g(sp, rdrti) = t/„($p, Cdrti)/rt„(~, 0) as a function of $p
for different values of ~v.~. These theoretical curves
are very similar to experimental ones of Fig. 2, with,
for the largest ~~~, negative values of g and its non-
monotonous variation as field increases. A more conve-
nient representation is a plot of isolines g = const in the
plane (gp, rdrii) as presented in Fig. 4. The isoline g = 0

Because of the appearance of M ', the magnetic torque
M X 8 is no longer equal to zero. This torque can be
averaged over the period of field variation 2n/cd, because
in our experiments this period is always much smaller
than the characteristic hydrodynamic time pd /rI. For
the mean magnetic torque one gets

1
M X H = —6rIpgA, g = —socosrdtL($, )F($,).2

(9)

20

15

10
0

o o
I

C)

Substiting (9) into (3) it is easy to see that the last term
in the fIuid motion relationship may be grouped with the
viscous one:

3
rthv —3riq&gcurlA = 2'~ 1 + —pg—~curl&.

)
(10)
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FIG. 4. Isolines of g(sp, rdrp) in the Plane (go, rdr~) for
different values of g between +0.8 and —0.9.
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~ 1parts the plane into two regions: g & 0 for ccp7.p
and g ~ 0 for ~~& ~ 1. For a quantitative comparison,
the experimental data are plotted in a similar represen-
tation in Fig. 5 using rJ„(~,0) = 2.5, $p = Ms VH/kT =
5.25 X 10 H (Oe) and cars = 27rfrB = 10 f (Hz).
We observe a strong similarity between the experimental
plots of Fig. 5 and those of Fig. 4, obtained with a single
particle theory; in particular, in both cases g changes its

Thus for co~z ~ 1, the MF viscosity under an alternat-
ing magnetic field can become smaller than the MF vis-
cosity in zero field. A decrease of 25% is observed ex-

erimentally. An interesting limit would be to reach an
absolute zero in the MF viscosity; instabilities and flow re-
circulations would then develop spontaneously without any
external flow. The marginal curve, theoretically predicted

~ ~

in [5], corresponds to a critical field g, = 126 and a crttt-
cal frequency co, vz = 20. Such values could be reached
only with larger particles, for which both the colloidal sta-
bility and the Newtonian behavior would be difficult to
preserve. Anyway, one of the basic results obtained with
the present Newtonian MF is that its viscosity can be tuned
between 220 and 50 cP by a field of 2000 Oe monitoring
only the field frequency between 0 and 700 Hz. This at-
tractive property could lead to a new generation of adap-
tative dampers.

We are greatly indebted to Dr. S. Neveu for providing
us with the MF sample and to J. Servais for his technical
assistance. J.-C. B. is affiliated with the Universite Paris
7. The Laboratoire d'Acoustique et Optique de la Matiere
Condensee is associated with the Centre National de la
Recherche Scientifique.
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FIG. 5. Experimental isolines of g (gp, cars) in the plane
(g(), cars). +: g = 0.216; ~: g = 0.1; : g = 0.044;

= 0; 0: = —0.036; L: g = —0.052; ~: g = —0.068;
an +:g=-a d +: = —0.092. Full and dotted lines are guides for the
eye.
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