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Recently, biological preparations which are thought to be chaotic have been controlled using

algorithms based on the detection and manipulation of periodic unstable points.

The dynamics of

these systems are, however, contaminated with noise; thus detection becomes a statistical process.
Here we show that low dimensional chaos can be reliably detected with large noise contamination and
distinguished from noisy limit cycles. We also examine a purely chaotic high dimensional system.

PACS numbers: 05.45.+b, 05.40.+j, 87.10.4+¢

Attempts to experimentally detect low dimensional
chaotic behavior in biological preparations have a long
history. Such efforts are usually designed to yield a
measure, for example, the dimension or entropy, of the
underlying dynamics by applying some algorithm to an
experimentally obtained time series [1]. Attention has
been drawn to a wide variety of systems ranging from
the dynamics of heart beats [2] to brain function [3].
However, because the most commonly used algorithms
and their close variants require long data sets [4], are
susceptible to noise contamination, or are unreliable when
applied to relatively high dimensional systems [5], efforts
to detect low-dimensional chaos in the aforementioned
systems, which are nearly always found to be noisy and/or
high dimensional and nonstationary, have been questioned
[6]. In spite of these difficulties, careful statistical studies
of large data sets have recently produced evidence for
low dimensional behavior in spinal cord reflexes and
hippocampal slices [7]. However, if the detection of
chaos is ever to become a useful analytical tool applied to
biological systems, it will be necessary to detect it reliably
in the presence of noise using relatively short data sets
comparable to those from current biological experiments.

The cyclic theory of chaos [8] offers a different ap-
proach. In this picture, an infinite set of periodic unsta-
ble points (PUP’s) forms a “skeleton” upon which the
chaotic dynamics is built. This means that orbits will,
with some probability, visit the PUP’s, approaching along
a stable manifold and departing along an unstable man-
ifold. These encounters, even though they may be rare,
can be detected by identifying a suitable characteristic,
for example, by measuring the eigenvectors. In this way,
rare events, if identified reliably, can be used to detect
low dimensional deterministic behavior. Indeed, Ott, Gre-
bogi, and Yorke (OGY) have developed a chaos control
algorithm based upon PUP’s [9], which has been demon-
strated in a variety of physical systems [10]. Another re-
cent approach has been proposed by Kaplan [11]. These
new methods, wherein rare events or their signatures are
detected, should be contrasted with traditional methods
which rely on, for example, dimension estimates based on
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the averaged stationary properties of chaotic attractors and
which subject the entire data file to analysis.

Recently, the OGY algorithm has been used in a
spectacular set of experiments to detect chaos and to
control it in a rabbit heart and in a hippocampal slice [12].
However, encounters with a PUP, upon which all of the
work referenced in [10] and [12] is based, can also be
detected in noisy limit cycles [13], and even in files made
up from purely random distributions: Gaussian, Poisson,
and gamma [14]. But the question is, How often can such
encounters be detected? Therefore, the reliable detection
of chaos by encounters with PUP’s becomes a matter of
statistics.

In this Letter we show that chaotic attractors can
be detected reliably by using these methods applied to
two example systems: a periodically forced Van der Pol
oscillator and a bistable, first order time delay system,
both with significant amounts of added noise. Both
systems are realized as analog simulators and thus output
continuous voltages. But data obtained from biological
preparations most often are a series of interspike time
intervals. To obtain such a series from the continuous
outputs, we follow Sauer [15] and pass the voltages
through a threshold detector which outputs a narrow
pulse each time a positive-going threshold crossing occurs
(negative-going return crossings are ignored). Thus the
continuous outputs of the simulators mimic a neuron
membrane potential: Whenever the threshold is exceeded,
the neuron fires. Each record of interspike time intervals
is first analyzed for encounters, then the sequential order
of the intervals is randomly scrambled to form a surrogate
set and reanalyzed. The number of detected encounters in
the original set N is then compared to the number detected
in the surrogate set N, with the fraction
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Scrambling was accomplished using either a Gaussian or
a uniform distribution. Neither the choice of distribution
nor the threshold level [16] (so long as the threshold lay
well within the attractor) had any measurable effect on the
results.
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Our experiment consists of measuring F as a function
noise intensity for two different systems. Assuming that
the surrogate data sets yield no encounters, then F = 1
cleanly indicated the presence of a PUP. Of course, the
selection criteria by which a valid encounter is defined are
all important, and we show below that, even with more
stringent criteria, encounters are detected for both chaotic
and noisy limit cycles and their surrogates.

A recording consisted of a set of time intervals between
pulses from the threshold detector. Each record consisted
of approximately 4 X 10* time intervals obtained in
about 3.5 min of recording time. The records were then
analyzed by plotting a first-return map, 7, vs Tn—i,
searching the record for encounters as defined by one of
three selection criteria, and then assembling and searching
the surrogate record for encounters. The line of slope 1
(45° line) on the return map is the line upon which all
period 1 orbits lie. The selection criteria were as follows.
Level 0, three sequential points which approach the 45°
line at successively decreasing perpendicular distances,
followed by three points which depart at successively
increasing distances. Level I, the same but with straight
lines fit to the three approaching points and to the
three departing points with a slope (eigenvalue) condition
applied, 0 > mg = —1 for the approaches along the
stable manifold, and —1 > m,s > — for departures
along the unstable manifold. Level 2, the same but
with the additional condition that the intersection of the
straight line fits must lie within a circle of specified radius
centered on the 45° line at the location of the PUP,
which was determined by the maximum of a histogram
of all time intervals. These criteria define encounters
with increasing rigor in order to demonstrate the statistical
effects of such definitions.

An example taken from the Van der Pol system with
small noise is shown in Fig. 1(a). The open circles are
the return map. Three encounters, selected at level 1
and found at widely separated locations in the record, are
shown by the solid triangles; the upright triangles show
the stable manifold and the inverted triangles show the
unstable manifold. The solid lines with negative slope
are least square fits to the encounter data and indicate
the stable and unstable directions. The three encounters
are similar, that is, the solid triangles cluster in groups of
three, and this is consistent with the observations of Schiff
et al. [12(b)]. The map of the surrogate record is shown
in Fig. 1(b). Three encounters satisfying the level 1
criteria are shown but are not of the same quality as those
from the original record. They are recorded nevertheless
in order to avoid subjective selection. Figure 1(c) shows
the effect of the selection level on the Van der Pol data,
where we have plotted F versus the intensity for level O,
diamonds; level 1, circles; and level 2, inverted triangles.
We note that F is close to one (near perfect discrimination
of the noisy chaotic attractor from its surrogate) for small
noise, and that it remains distinguishable (F > 0) even for
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FIG. 1. (a) A return map (open circles) measured for the

chaotic attractor of the Van der Pol oscillator with a noise
voltage of 0.25 V rms, denoting a set of three encounters
showing approaches along the stable manifold (upright solid
triangles) and departures along the unstable manifold (inverted
triangles). The negative slope lines are fits to the approach and
departure data sets. Level 1 selection criteria were used (see
text). (b) A set of three encounters taken from the surrogate of
the record used for (a). (c) The fraction F plotted versus noise
voltage for the chaotic Van der Pol attractor for selection level
0 (diamonds), 1 (circles), and 2 (inverted triangles). F > 0
implies positive detectability of the PUP.

the largest noises measured, and that the distinguishability
is improved in the case of the more stringent selection
criteria. Moreover, even for the lowest level of selection,
F > 0, at least over the range measured here. This is
a remarkable result. It means that a chaotic attractor
can be detected even in the presence of large noise by
searching for certain events which, though rare, meet
specific criteria. The implication of this result is that
such attractors may be found reliably in records of length
commonly obtained in biological experiments. We now
turn to a description of the systems and the experiments
performed with them.

The Van der Pol simulator was designed to mimic the
equation

i — 7i(€ — uP)it + u + Acoswt + £(1) =0, (2)
where 7; is the characteristic system time (the integrator
time constant), € is the nonlinearity parameter, A cos wt
is the periodic forcing, and &(¢) is the noise [16]. For
certain pairs of values A and w, either a chaotic attractor
or a nearby limit cycle can be obtained. The response of
this system, u(z), was passed through a threshold detector
to make time interval records.

The object is to study the reliability of detection of the
chaotic attractor in comparison with that of a noisy limit
cycle. Figure 2 shows the data obtained for level 1 selec-
tion, where the solid circles represent the chaotic attractor
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and the solid triangles the limit cycle. The fraction F is
plotted in Fig. 2(a) whereupon comparing circles to trian-
gles we note that good discrimination is obtained over at
least half the range, perhaps up to about 3 V rms of noise.
For comparison, in the absence of noise, the chaotic re-
sponse u(t) was about 1.7 V rms. Thus the degree of
noise contamination was about 1.76 times the magnitude
of the uncontaminated response. Each open symbol is the
mean of six independent records obtained at that noise
voltage, and the error bars are the standard deviations.
True, the very first triangle, for 0.25 V rms noise, shows
a large F value comparable to that of the chaotic attrac-
tor. This is an artifact. The algorithm searches for signa-
tures of PUP’s. There can be none in the data file from a
low noise limit cycle. Adding noise to the limit cycle in-
creases the randomness, resulting in more detected chance
encounters (for example, that triangle resulted from the
detection of only one encounter in the record, and zero in
its surrogate). Figures 2(b) and 2(c) show the actual num-
ber of encounters detected in the records and in their sur-
rogates, respectively. The number of detected encounters
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FIG. 2. Data for the Van der Pol oscillator versus noise
voltage: chaotic attractor (solid circles); cycle (solid triangles)
using selection level 1 (see text). (a) The fraction F. (b) The
total number of detected encounters in each record of 4 X 10*
time intervals. (c) The same, but for the surrogates of the
records used in (b). The open symbols with error bars indicate
the statistical scatter (see text). The root mean square noise
voltages plotted on the abscissa are /(£2), where £ is the noise
input in Eq. (2).
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for the limit cycle data (triangles) increases with increas-
ing randomness in both data files [Fig. 2(b)] and their sur-
rogates [Fig. 2(c)].

The Van der Pol system is relatively robust to additive
noise. In order to investigate a system which is more
sensitive to the noise and, moreover, is high dimensional,
we studied the time delay system,

Tix(t) = x(t — 74) — x>t — 74) + £(1), 3)

where 7, is the time delay and the system’s only bifur-
cation parameter. For ¢ = 0, this system bifurcates to a
local limit cycle confined to the bottoms of the potential
wells at 7 = 1.179, displays a homoclinic orbit which just
touches the central unstable point at 7 = 2.110, and then
shows a global limit cycle until 7 = 2.427 which marks
the bifurcations to chaos [17]. We operate this system at
7 = 2.392 for the limit cycle and at 7 = 2.472 for the
chaotic attractor. Note the very small difference between
these values. Because these orbits lie close to the homo-
clinic orbit, this system is very sensitive to added noise.
In this case we can achieve very substantial changes in
the attractor by adding only 100 mV rms of noise. The
data are shown in Fig. 3(a) where the solid circles repre-
sent the noisy chaotic attractor and the triangles the limit
cycle. As before, the open symbols are the means of six
independent records. We note that ¥ is now negative for

1.0

]
05 °

05| a
B S S e T
0 10 20 30 40 50 60 70 80 90 100
Noise (V,..)
1.00 o
[ ]
0.75 - ® . (b)
. e ©
[ [ )
0.50 |- seo N
w [ ]
0.25 |-
0.00 |-
[ ] ° [
-0.25 L+ ; }
2.475 2.500 2525 2.550

Time Delay (dimensionless)

FIG. 3. Data for the time delay system for the chaotic
attractor (solid circles) and limit cycle (solid triangles) using
selection level 1. (a) The fraction F versus the rms noise
voltage /(£2), where £ is the noise input in Eq. (3). (b) The
fraction F for the chaotic attractor of the noise free system
versus time delay. Increasing time delay represents increasing
dimension, which plays the same general rule for the reliability
of detection of PUP’s as additive noise.
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the limit cycle. This means that there were fewer selected
encounters in the record than in its surrogate, but the num-
ber of encounters in the surrogate grows with increasing
noise so that F — 0 again for large noise. This result
clearly demonstrates the ability of this method to distin-
guish between noisy limit cycle and chaotic attractors.
We note that statistically good discrimination is possible
up to about 70 mV rms of noise.

High dimensionality is thought to defeat efforts to
detect chaos in biological preparations. Our time delay
system is potentially infinite dimensional, but the actual
fractal dimension of the noise free system depends on the
time delay [18]. We have tested our level 1 selection
criteria as a function of time delay in the chaotic regime
of the noise free (¢ = 0) system. The results are shown
in Fig. 3(b), where it is evident that increasing time delay
has the same overall effect as increasing noise, that is, it
degrades the quality of discrimination. Moreover, we see
that only very small increases in time delay are sufficient
to bring about zero or negative values of F' [19]. Thus
we find our selection algorithms of little use for high
dimensional systems (but how high we cannot say).

We conclude that chaos can be detected in records of
noisy attractors by the appropriate selection of rare events,
and that it can be reliably distinguished from noisy limit
cycles.
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