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Resetting and Annihilation of Reentrant Abnormally Rapid Heartbeat
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Excitable media support circulating waves on a one-dimensional ring. Continuity arguments,
developed originally for resetting limit cycle oscillations in finite-dimensional dynamical systems,
suggest that there must exist a range of phases and amplitudes for perturbations of the reentrant wave
that lead to its annihilation. The annihilation is illustrated in the Fitzhugh-Nagumo equation of excitable
media. This phenomenon is related to clinical studies in which reentrant waves in the human heart are
reset or annihilated by electrical stimulation delivered directly to the heart.

PACS numbers: 87.22.—q, 03.40.Kf, 87.10.+e

In the normal heart the rhythm is set by an autonomous
pacemaker, the sinoatrial node [1,2]. Cardiac arrhythmias
are heart rhythms in which the generation and/or the
propagation of the cardiac impulse are abnormal. In one
class of cardiac arrhythmia, called reentrant tachycardias,
there is an abnormally rapid heartbeat whose period is set
by the time that an excitation takes to travel in a circuitous
path [1—3]. A single electrical stimulus delivered to a
human heart during reentrant tachycardia can have various
effects including termination or resetting of the rhythm
[1,4]. In this Letter, we offer an interpretation of these
clinical observations by assuming a highly simplified
model of reentrant tachycardias in which a nonlinear
partial differential equation represents the circulation of
a wave of excitation on a one-dimensional ring [5—8].
Numerical simulations and continuity arguments lead us
to conjecture that a general property of such models is that
there should exist ranges for the amplitude and phases of
delivery of a stimulus that will lead to annihilation of the
tachycardia.

An excitable medium is characterized by the following
two properties. (1) A small but finite perturbation away
from a steady state will lead to a large excursion (an
excitation) before the steady state is reestablished. This
excitation is associated with an action potential in nerve

[9] or heart [5,10] and an oxidation wave in the Belousov-
Zhabotinsky reaction [11]. The onset of the excitation
is called the excitation time (2) Followin. g the start
of the excitation there is a time interval during which
a perturbation does not induce a new excitation —this
interval is called the refractory period Generally, . the
velocity of an excitation wave will be slowed if it follows
too closely after a preceding wave [7,8]. Further, it follows
from the refractory properties of excitable media that two
waves in an excitable medium will not pass through each
other but will annihilate themselves if they collide.

The above notions can be illustrated by consideration
of the Fitzhugh-Nagumo equation, a nonlinear partial
differential equation that is a prototypical model of
excitable media [9,10],

v= —w —v(v —0.139) (v —I) + D + I(R),BR2

= 0.008(v —2.54w), ()
where D represents the diffusion coefficient, I(R) repre-
sents injected current (the perturbation) at position R, and
the parameters are from [9]. In the homogeneous equa-
tions (D = 0) with no injected current, there is a globally
stable steady state at v = 0, w = 0. In response to a suf-
ficiently large perturbation a large transient of v and w

away from 0 can be elicited. The tracing of v as a func-
tion of time is similar to action potentials in biological
tissue, and this equation and its variants have been used
widely to model excitation in nerve [9] and heart [10].

Although there are no stable oscillations in the homo-
geneous equations [9], stable oscillations do exist on the
ring, Fig. 1 (first column). The successive traces show
the value of the v variable around the ring at four different
times. We assume the circumference is 2 X ~5 cm, D =
1 cm /sec, and cyclic boundary conditions [12]. The ex-
citation travels around the ring with a period To = 356.1
msec. The refractory period is about 60 msec. We call
the direction of propagation of the wave (here right to
left) the anterograde direction and the opposite direction
the retrograde direction.

We assume that stimuli are applied over a small seg-
ment of the ring. The effects of perturbation depend on
the amplitude of the stimulus and the location of the stim-
ulns relative to the wave front. Stimuli that fall in the
refractory period do not lead to new excitations. Stim-
uli that fall outside of the refractory period are called
suprathreshold if they lead to the generation of excitation
wave(s) and subthreshold if they do not. We are princi-
pally concerned with the effects of suprathreshold stimuli.

To discuss resetting the oscillation by perturbations it
is necessary to define the phase of a stimulation. We
assume a stably circulating excitation wave with intrinsic
cycle length To. Because of the circular symmetry of the
ring, the definition of phase of the stimulus is arbitrary.

0031-9007/95/75(10)/2059(4)$06. 00 1995 The American Physical Society 2059



VOLOLUME 75, NUMBER 10 PHYSICAL R E VIEW LETTERS 4 SEPTEMBER 1995

1.0-

0.5-

0.0

-0.5
0.0

1.0-

0.5-

0.0-

coatrol

0.5 1.0

1.0-

0.5-

0.0

-0.5
0.0

1.0-

0.5-

0.0-

= 0.235

I I

0.5 1.0

1.0-

0.5

0.0

%.5
0.0

1.0-

0.5-

0.0-

48t1m = 0.294

I

0.5 1.0

t = 133

t = 183 0-

-0.5
v 0.0

1.0-

I

0.5 1.0
%.5

0.0 0.5 1.0

1.0-

-0.5
0.0

1.0-

0.5 1.0

0.0
I I

0.2 0.4 0.6 0.8 1.0

&s~zm

0.5-

0.0-

%.5
0.0

1.0-

0.5-

0.0-

0.5 1.0

0.5-

0.0-

-0.5 I ' I

0.5 1.0

1.0-

0.5-

0.5-

0.0-

%.5
0.0

1.0-

0.5-

0.0-

0.5 1.0

t=233

t = 283

FIG. 2. Summar of
usin

y o resetting data for

times T T
th }lold stimulus. The norm

i a ion
e normalized excitatio

1 t'o of th

lOI1

h littl ff t 0» (0
0.28, o h 'llosci ation 028 ( ].

%.5
0.0

I I

0.5 1.0
-0.5

0.5 1.0
-0.5

0.0
I I

0.5 1.0

ring position

FIG. 1. Simulu ation of the Fitzhu h-Ng — g

is a
i a ion around a rin .

s owing

bt " I
P

gin. n each anel
si ion from

p iab e d
ring position. Eac

is isp ayed

}lo t t}1
corresponds to the time the excita

1 t C 1 1
delive

umn: no stimu u;

collisi
ga es in a retro

to

g

annihilation of the
wit the ori ing al reentrant wave le d

e

delivere
e reentrant wave. C

d o iio 0.75

~
p p g

ro a
an ea s to its annihilation

'g 'go

For pur oses o
t=0

o convenience do
'

an "is la

ough 0.5 at a position
en v increases

g position = 0.75. SubOdhdhh
' j '"g

I =
cm) at position 0.75 w

=1f 0 i s. igure 2 sum
sequent excitation time

s.

ho h05),, normalized b
as a function of the h

y To at position 0.75

0.16) th i littl ffÃte e ect on the subse ue
excitation around th

q nt circulation of

0ccur at the times th
e ring, and subs

s ey would have b
sequent activationns

was no stimulus.
been expected if there

Stimuli delivered 1

dl ff b h If
ater in the c cle le

g
ns on the rin Fi

in

g ig.
ision between the ori

ere
e original wave and the

retrogradely ro apropagated wave enerat
1 d' h h 1anni ilation of both ~aves
onl rave ing in the ant og

is reset so that subse
ion.

position 0.75 now
su sequent activations at

would have bee b
now occur at differen

een o served if there w
rent times from wh tw at

Stimuli delive d bre etween 0.16 (ere was no perturbat ion.

single wave travelin
( 0.28 generate a

ing retro gradel Fi
is wave collides 'th h

annihilation of th
wi t e ori ina

e reentrant wave.

'g' a wave leading too an

These results
and analytical studies that show

q

h i) c1an provide a mechani
re er-

and annihilation fo reentrant tach car
anism for the resett ing

1 ob ti [4. W
of reentrant waves b p

s . We conjecture tha t the annihilation

~
p y ' ps y a spatiall res-

p

excitable media.
o partial differentialia equations modeling

Our ar umgument in support of this
d' 1 s o resetting limit c

a ynamical s stems
tions in infinite-dim

s to resetting oscilla-
— imensional systems. T

len
s in nite dimensions

h l 11 [1314].
A stable limit ccyc e is an oscillation

'

ential equations that is alw
sm 11 t b tio Th b

at is always reestablish

cle consists of 11

e asin o at
y

a states that will a r
traction of a lim tmi ey-

e hl In some situations
cyc e

p
a ies outside of the

o
'

ea ing to ualita
ion

q i atively different behav-

A
t er perturbations res

s above, we call the
eset the oscillation.

an arbitrary hduci 1

e time when the
' ce oscillation reach

ucia point the excitat'
an = 0. Assume that, following a

2060



VOLUME 75, NUMBER 10 PHYSICAL REVIEW LETTERS 4 SEPTEMBER 1995

T (@) =j To, for 0 (3a)

TI(@) =@ + (j —1)To, for p«r, ( @, (3b)

where P,«, is the phase at the end of the refractory
period. If the velocity of the excitation waves was always
a constant, the approximation sign in Eq. (3b) would be
replaced by an equal sign. Since the velocity of the wave
propagation is typically reduced for waves that follow
in the wake of a previous excitation, the subsequent
activations may be delayed (see the slight flattening of
the times of successive activations in Fig. 2 for @ =
0.28). For large rings, the intrinsic period To of the
reentrant excitation is proportional to the circumference,
but the magnitude of the delay will reach a constant
value for stimuli that follow in the wake of a previous
wave. Consequently, the timing of successive activations
is increasingly better approximated by the linear functions
in Eq. (3) as the ring size increases. Equation (3) implies
a discontinuity in the phase transition curve at @„r,. As
the ring size shrinks, the magnitude of the discontinuity
will change, but, in general, should still persist. However,
discontinuities in the phase transition curve are forbidden
by the continuity rule. Consequently, if the continuity
rule holds, there must be a time interval following the
refractory period that leads to a transition outside of
the basin of attraction of the original oscillation [16].
Thus, based on the above argument, a general property
of reentry waves in a one-dimensional ring in excitable

perturbation delivered at phase @,we remain in the basin
of attraction of the oscillation and that successive excita-
tion times occur at Tt(@), T2(@),. . . , TI(p). If there is
no resetting we have TI(@) =jTo. If there is resetting,
then the limit cycle is approached for long times so that
for j sufficiently large we have TI(@) —TI t(@) = To
Taking a sufficiently large value of j so that the limit
cycle is asymptotically approached, the phase transition
curve g(@) is defined to be

g(@) = P — ' (mod 1). (2)
T, (e)

To

The following mathematical result follows directly
from Guckenheimer [14] for resetting limit cycle oscil-
lations in finite dimensions. Continuity rule: Provided a
perturbation delivered at any phase of the cycle leaves
one in the basin of attraction of the oscillation, the
phase transition curve g(@) is a continuous circle map.
We conjecture that the result also holds for resetting in
infinite-dimensional systems [15].

We now apply the continuity rule to resetting the reen-
trant wave in the infinite-dimensional partial differential
equations. We assume that the stimulus delivery and the
subsequent measurements of the excitation times are at
the same position, and that the ring is sufficiently large
but of finite circumference. Based on the properties of
excitable media described above, the timing of successive
activations following a stimulus should be at

media is that suprathreshold stimuli falling in a range
of phases of the cycle will lead to annihilation of
the reentrant wave [17]. This result is only based on
continuity and generic properties of excitable media, and
therefore it should hold in a wide range of physical
and biological systems displaying reentrant waves, or
in mathematical models of these systems formulated as
partial differential equations.

Since reentrant tachycardias are often associated with
significant sickness or death, understanding the mecha-
nism for their initiation and termination is of crucial im-
portance in medicine. Although previous theoretical and
experimental papers have documented the role of a single
stimulus delivered in the wake of a propagating excita-
tion wave in the initiation and termination of reentrant
tachycardias in particular cases [4,5,10], we have argued
that the mechanism of tachycardia termination observed
here should hold for a large class of systems. We sug-
gest that assessment of clinically measured phase transi-
tion curves during tachycardias may help in the analysis
of their mechanisms and may eventually help in the treat-
ment of these dangerous arrhythmias.
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