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Elasticity of Compressed Emulsions
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The elastic shear modulus of monodisperse emulsions is shown to exhibit a universal dependence
on droplet volume fraction @ when scaled by the Laplace pressure of the droplets, increasing as

@(P —P,), where @, = 0.635, the value of random close packing of solid spheres. Surprisingly the
osmotic pressure required to compress the emulsions to increase @ is nearly the same as the shear
modulus over a large range of volume fraction, while the bulk osmotic modulus differs significantly.
Models based on the structural disorder of the emulsions are discussed to account for these data.

PACS numbers: 82.70.Kj

Emulsions are droplets of one fluid dispersed in a second
immiscible fIuid and are stabilized by a surfactant. One of
their most important and useful attributes is their rheology;
despite being comprised solely of Auids, emulsions can
nevertheless be elastic solids. This elasticity is achieved
precisely because the droplets are fluid. When an osmotic
pressure H is exerted on the droplets, their volume fraction

@ is increased and their shape is distorted, storing energy
in their interfaces [1]. The elasticity can result from
the energy stored by additional deformation of the shape
induced by an applied strain. The energy scale that
controls this deformation is the internal or Laplace pressure
of the droplets o/r, where o.. is the interfacial tension and
r is the radius of the undeformed droplet.

The key to the origin of the elastic modulus of an
emulsion is its dependence on P and hence on osmotic
pressure. However, this intrinsic relationship is not well
understood. For P = 1, an emulsion should resemble a
dry foam, where the elasticity results entirely from the
stretching of the interfaces [2]. An extension to lower P
for a two-dimensional lattice of deformable cylinders sug-
gested that the shear modulus should exhibit only a weak
volume fraction dependence as P decreases, until it falls
precipitously to zero when the droplets no longer touch and
thus are not deformed [3]. More exact, three-dimensional
calculations for ordered lattices arrive at a similar conclu-
sion [4,5]. However, results from an extensive series of
experiments were in sharp disagreement with these pre-
dictions; the measured shear modulus was found to very
as O' —Pt~3($ —@,)o/r, where .P, = 0.71 [6]. This
emulsion was comprised of polydisperse droplets, compli-
cating a precise comparison to the theoretical prediction
and suggesting the discrepancy results from polydispersity.

In this Letter, we present measurements of the P depen-
dence of the elastic modulus of emulsions comprised of
monodisperse droplets. Thus the Laplace pressure is the
same for each droplet, enabling a precise comparison with
theoretical expectations. We show that the shear mod-
ulus exhibits a universal P dependence when scaled by

a/r, which can be described by P(@ —P, ); however,
here @, = 0.635, the volume fraction of randomly close
packed spheres. More surprisingly, we show that the os-
motic pressure is nearly the same as the shear modulus over
a large range of P. By contrast, the longitudinal counter-
part of the shear modulus, or the bulk osmotic modulus,
has a markedly different P dependence. We also measure
the frequency dependence of both the storage, or elastic
modulus G', and the loss, or viscous modulus G". Their
behavior is reminiscent of a glass, consistent with the ob-
served structure of the emulsion droplets. This suggests
that the origin of the P dependence of the elasticity is the
structural disorder of the droplets.

The emulsions were comprised of silicon oil droplets
in water, stabilized by 0.01M sodium dodecylsulphate
(SDS), and purified using a crystallization fractiona-
tion technique [7]. The polydispersity was about 10%
of the radius, while the interfacial tension was o
9.8 dyn/cm. The volume fraction was set by centrifu-
gation and was measured by weight before and after
evaporation of the water. The droplet structure remained
disordered at all values of P. The linear viscoelastic shear
moduli were measured by applying an oscillatory strain
and measuring the resultant stress. A cone and plate ge-
ometry was used for higher @ while a double wall Couette
geometry was used for lower volume fractions. The walls
of both containers were roughened to a scale comparable
to the droplet size, completely eliminating any slip at the
boundaries [8].

Typical results for both G' and G" as functions of
the maximum applied oscillatory strain y are shown in

Fig. 1 for several volume fractions of an emulsion with
r = 0.53 p, m. The elastic modulus increases by nearly
four decades as @ increases; moreover, it is always
larger than the loss modulus at sufficiently small strains.
By contrast, at larger strains, the apparent G" initially
rises and then decreases but is always larger than the
apparent G'. This presumably rejects the increased loss
due to large scale structural rearrangements or Aow of the
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droplets as the strain increases above the yield value. All
our measurements are made at sufficiently small strains so
that both G' and G" are in the y independent regime.

The frequency dependence of the moduli is shown in

Fig. 2 for several P. In all cases, there is a plateau
in G'(cu); at high P, this extends over the full four
decades of frequency measured, while for the lowest P,
the plateau is no longer strictly independent of co but can
still be uniquely identified by the inflection point G„. By
contrast, for all P, G"(tu) exhibits a shallow minimum
G", the frequency of which increases with @. This
minimum must result from an increase in G"(cu) at both
higher and lower frequencies. The low frequency rise in
G" implies the existence of relaxation processes resulting
from very slow structural rearrangements of the droplets
[9]. The high frequency rise in G" reflects the ultimate
domination of the viscous relaxation of the fluid phase at
very high frequencies, well above those measured. We
use G to characterize the static elasticity at frequencies
above the extremely slow rearrangements of the glassy
structure, and G" to characterize the associated loss
modulus.

We measure the P dependence of both G„' and G" for
samples with different radii and normalize the results by
the energy density of the undeformed droplets o./r. We
also account for the consequences of the thin water film of
thickness h between the droplet interfaces [10] due to the
screened Coulomb repulsion between them. This repul-
sive force is often called a disjoining pressure [11]. The
thickness of this film must very with volume fraction, as
the droplets are squeezed together and become increasingly
deformed, forcing the repulsive films closer together. For

0
low @,we find it = 175 A, consistent with force-distance
measurements for these emulsions where the screening
length is —50 A [12]; at the highest @, we estimate h =
50 A by comparison to measurements of the film thick-
ness at similar osmotic pressures [13]. We interpolate lin-
early between these two values for P ) 0.64 to obtain an
effective volume fraction Jeff $(1 + 3h/2r). This in-

cludes the film with the volume of the droplets and focuses
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FIG. 1. The y dependence of the storage G' (solid points) and
loss G" (open points) moduli of a monodisperse emulsion with
r = 0.53 p, m for P,rr = 0.80 (diamonds), 0.63 (triangles), and
0.60 (circles), measured at co = 1 rad/sec.
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FIG. 2. The frequency dependence of the storage G' (solid
points) and loss G" (open points) moduli of a monodisperse
emulsion with r = 0.53 p, m for @,ft = 0.80 (diamonds), 0.63
(triangles), and 0.60 (circles). The results for the two larger

ff were obtained with y = 0.005, while those for the lowest
were obtained with y = 0.015.

on the consequences of the droplet packing, independent of
the effects of the repulsive interaction. The scaled data for
G' all fall onto a single curve, as shown by the solid points
in Fig. 3; the data for G" also fall onto a single curve, as
shown by the open points in Fig. 3. The scaled G' rise
by nearly four decades as Pgf f increases from 0.60 to 0.65.
Moreover, over all Jeff shown, G„' dominates over G";
this becomes increasingly pronounced at high P,rr. The
scaling with o/r confir. ms that the elasticity results from
the storage of energy at the droplet interfaces. Moreover,
the scaling indicates that the elasticity of these compressed,
monodisperse emulsions is universal, dependent only on
the packing geometry of the droplets.

Like the elasticity, the osmotic pressure also rejects
energy storage in the interfaces as they are deformed with
increasing @. To compare the osmotic pressure with the
shear modulus, we measured its @ dependence using an

emulsion with r = 0.48 p, m. At high P, II was set by
dialysis using calibrated polymer mixtures [14], while at
lower P, it was set by gentle centrifugation. The value
of p, fr corresponding to each II was determined and the
data, normalized by o./r, are plotted as the large open
circles in Fig. 3. Remarkably, to within experimental
uncertainty, II is nearly the same as G„, until it diverges
at high @gff.

To understand these results, we consider the behavior
in different regimes of volume fraction. Near @,ff 1,
the behavior of the emulsion should be analogous to
a dry foam assuming the imposed shear stretches the
films as the droplets deform, rather than further squeezing
the droplets together. A random, dry foam, is predicted
to have G' = 0.55o /r [2]. Our results suggest that
G' approaches 0.6o /r, in excellent agreement with this
prediction. The osmotic pressure is affected by the
repulsive interactions and should diverge as the droplets
are increasingly deformed, as observed in our data.
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FIG. 3. The plateau value of the elastic modulus G' and the
minimum of the loss modulus G" normalized by o/r for
emulsions with r = 0.25 (solid circles), 0.37 (triangles), 0.53
(squares), and 0.74 pm (diamonds), plotted as functions of

ff. Excellent scaling of the data is observed, demonstrating
the universal nature of the elasticity. The large open circles
are the measured values of the osmotic pressure, normalized by
o/r for an em. ulsion with r = 0.48 p, m. The osmotic pressure
is nearly the same as the elastic modulus, until it diverges at
very high volume fractions. The solid line represents the bulk
osmotic modulus.

Below @, = 0.635, packing constraints do not force
the droplets to deform, yet the emulsion still retains
its elastic behavior, despite the fact that II is orders
of magnitude less than the Laplace pressure. Here
entropic effects must play a significant role since the
droplets are small enough that their Brownian motion
is important. Thus the behavior might be understood
by comparison to solid colloidal spheres. For
0.55, solid spheres also exhibit a plateau in G'(co) and
a minimum in G"(co), with G' larger than G"; this
results from the packing constraints of a colloidal glass
[15]. Dynamic light scattering measurements from index
matched emulsions confirm the presence of a colloidal
glass transition at Pgff 0.58 [16]. Thus, by analogy,
near P, the emulsion elasticity is entropic in origin and
should scale as kIiT/r rather than o/r; however, .our
data are insufficient to ascertain this.

The most unusual behavior occurs above P„where
packing constraints force the droplets to deform. Here
G„' decreases approximately linearly with P«r —P, ; we
show this in Fig. 4 where we replot the data above @,
on a logarithmic plot. We emphasize, however, that this
behavior does not persist to the lowest P,rr where G„'

continues to decrease. This linear dependence is remi-
niscent of that observed for polydisperse emulsions [6];
however, here P, corresponds to random close packing
of rnonodisperse spheres. The data for H also exhibit
an approximately linear increase above @„although with
more scatter, until they diverge near P,rr = 0.8. There-
fore, the bulk osmotic modulus Gti = PdII/d@ must in-

crease sharply at P, and thus exhibits a dramatically dif-
ferent @,rr dependence than the shear modulus, as shown
schematically by the solid line in Fig. 3.

To understand this behavior, we first consider the
behavior of a single droplet confined in a box, whose
dimensions are decreased by a small amount 6x below
2r, thereby deforming the droplet shape and forming flat
facets of area a at the walls. For smail deformations, the
Laplace pressure is unchanged, so the force on the facet
is ao /r, and the osmotic pressure of the droplet is II—
ao./r3. Both a and the change in the volume are linearly
related to Bx; thus II —(@,rr —P, )o /r. The facet
behaves as a harmonic spring; the force is proportional
to Bx and hence to Jeff P„while the spring constant
is o/r. M.ore detailed calculations of the energy of
weakly deformed droplets arrive at a similar prediction,
except with an additional logarithmic dependence that
leads to a slight modification very close to P, [4]. This
central spring picture can be generalized to describe a bulk
emulsion by assuming that the neighboring droplets form
the box. Then the osmotic pressure squeezes opposing
interfaces together to form flat facets, each of which
behaves as a harmonic spring. However, these springs can
never be attractive but are always compressed; moreover,
they support only central forces. Because of packing
disorder, the flat facets pushing on each droplet are
random in their direction. However, since each droplet
cannot move, the total force exerted on it must sum to
zero; as a result, all facets do not necessarily have equal
areas, and thus all springs are not equally compressed.

When @ ) @„the droplets must be deformed, and the
volume fraction dependences of both the osmotic pressure
and the shear modulus depend on the behavior of the facets.
As the osmotic pressure is increased and the droplets are
further compressed, new facets must form. Thus one pos-
sible model for the behavior of the shear modulus is by
analogy to a network of springs, which are cut randomly.
Computer simulations, and effective medium theory, for an
ordered network of harmonic springs suggest that the shear
modulus decreases linearly in the number of springs, go-
ing to zero at the rigidity transition [17]. Stretched springs
exhibit a similar behavior, although P, is modified [18].
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FIG. 4. The values of G„' and II normalized by o/r and
plotted logarithmically as a function of P,&r

—P, . The solid
line is the behavior predicted by the network spring model for
G,'/(~/r)
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Assuming that the number of facets varies linearly with
volume fraction, we might expect the shear modulus to
decrease linearly as P,rr

—P, ; the critical volume frac-
tion is that of random close packing of the monodisperse
spheres, where facets are first formed. This model is sim-
ilar in spirit to a computer simulation of two-dimensional
polydisperse disks, which exhibits a rigidity loss transi-
tion as @ is decreased [19]. Since the density of springs
varies as P,&r, we expect G„' —@gff(c6 ff —cfp, )cr/r; this
does describe the data, as shown by the solid line in Fig. 4.
However, this picture can only describe the behavior of
the osmotic pressure if we assume that it is dominated by
the facets that are first formed at P, . Each of these must
be further compressed with increasing @«r, by contrast,
any new facets are significantly less compressed when
first formed and thus make a smaller contribution. In this
case, II —@,rr(@,rr —@,)o/r, .until the approximation
of constant droplet radium fails, whereupon the osmotic
pressure diverges. This is also in accord with the data, as
shown in Fig. 4.

While appealing, this picture probably does not ade-
quately capture the physics as @,r& approaches P, . The
percolation effects inherent in this picture require a de-
creasing number of facets to cause the loss of elasticity.
However, even at @„each sphere has, on average, six
nearest neighbors, restricting the total number of additional
facets that can be formed with increasing Pe ff and thus the
total change in the modulus that can be achieved. It is pos-
sible that the remnant polydispersity of the droplets leads
to far fewer facets at P„ thereby broadening the transition
and causing the linear decrease to persist. A much more
likely possibility recognizes the effects of the disorder of
the facets. Since the facets support only central forces,
they cannot support a shear stress by themselves, but do
so only because of their packing. However, because of
their disorder, some facets may shift positions upon appli-
cation of the shear. Indeed it is likely that some facets are
always incipiently unstable and will rearrange with arbi-
trarily small strains. This rearrangement will cause an im-
balance of the forces on the neighboring droplets, which in
turn will cause them to move, thus causing a propagation of
these rearrangements. As a result, the shear will cause the
droplets to move, or slip, relative to each other, reducing
the compression of the facets. After this rearrangement,
the net forces on each interior droplet will again sum to
zero, while the forces on the droplets at the surfaces will
both oppose the osmotic pressure and provide the restoring
force that leads to the shear modulus. Since this restor-
ing force results from a rearrangernent of the initial forces,
whose magnitudes are themselves set by the osmotic pres-
sure, it will itself be proportional to that same force and
hence will scale with H. Moreover, since the droplets are
packed in, and cannot move macroscopic distances, it is
reasonable to expect this force to scale with the applied
strain. As a result, the strain in the emulsion will not be
affine; instead the droplets will slip or rearrange instead

of deforming, reducing the shear modulus. We note that
this picture is somewhat suggestive of the modulus pre-
dicted for random systems under an extensional pressure;
the modulus has an important contribution which varies as
the pressure [20].

If this spring-rearrangement picture is correct, a com-
pressed emulsion would be a particularly unusual solid.
It becomes a solid solely because of the compressional
forces that result from the osmotic pressure; however, it

supports a shear by shifting to a state of lower positional
energy, thus requiring less deformation of the droplets.
In this case, it is not clear whether the modulus is a truly
causal quantity that obeys the Kramers-Kronig relations,
even though the experimentally measured modulus is lin-
ear in strain [9]. The essential conclusion of this paper
is the experimental observation of the scaling of the shear
modulus and its similarity with the osmotic pressure. This
behavior will serve as a critical test of the validity of any
proposed theory.
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