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Hidden Symmetries of Two-Dimensional String Effective Action
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The ten-dimensional heterotic string effective action with graviton, dilaton, and antisymmetric
tensor fields is dimensionally reduced to two spacetime dimensions. The resulting theory, with some
constraints on backgrounds, admits infinite sequence of conserved nonlocal currents. It is shown that
generators of the infinitesimal transformations associated with these currents satisfy the Kac-Moody
algebra.

PACS numbers: 11.25.Sq, 11.10.Kk

It is well known that string theories possess a rich sym-
metry structure and in the recent past, considerable at-
tention has been focused on the target space symmetries
of string theories. In four spacetime dimensions, these
symmetries include T duality and O(d, d) symmetry in
addition to 5 duality. It is well known that T duality
and O(d, d) transformations relate different background
configurations of string theory, whereas 5 duality pro-
vides valuable information regarding the nonperturbative
aspects of the string theory.

The purpose of this investigation is to unravel hid-
den symmetries of dimensionally reduced string effec-
tive action in two spacetime dimensions. Recently, we
have shown [1] the existence of an infinite set of nonlo-
cal conserved currents (NCC) for the reduced action with
some constraints. The starting point is to consider the
heterotic string effective action in ten dimensions with
massless backgrounds such as graviton, dilaton, and an-
tisymmetric tensor fields. Then, one toroidally compact-
ifies d of its internal coordinates and requires that the
backgrounds are independent of these d coordinates. It
has been demonstrated that the dimensionally reduced
effective action is invariant under global noncompact
O(d, d) symmetry transformations [2,3]. Thus in 1 + 1

dimensions the group is O(8, 8), and its algebra is de-
noted by g. The infinite sequence of currents was de-
rived for this action with some restrictions on the back-
grounds. It is well known that the Kac-Moody algebra
is intimately connected with integrable systems, theories
that admit NCC and string theory [4].

We exhibit the infinite parameter Lie algebra respon-
sible for the NCC to be the affine Kac-Moody alge-
bra. First, it is shown, following the work of Dolan and
Roos [5], that there is an infinitesimal symmetry trans-
formation, associated with each of these currents, which
leaves the Lagrangian invariant up to a total derivative
term [6]. Then, the existence of the Kac-Moody alge-
bra is proved, for the problem at hand, by suitably adopt-
ing the remarkable result of Dolan [7], derived for loop
space and two-dimensional chiral models. We identify
the infinite parameter Lie algebra, crucial for the NCC, to
be the affine Kac-Moody subalgebra C[s] g following

Ref. [7]. Here C[s] S g is an infinite-dimensional Lie
algebra defined over a ring of polynomials in the com-
plex variable sc. A simple representation of the genera-
tors of the algebra C[$] g is W("l = T g", where
fT ) are the generators of the finite parameter algebra g,
and n = 1, 2, . . . , ~. The generators of C[g] S g satisfy
[94l"l, ~&™]= f p~3Mt +"l when the algebra of the
generators of Q is [T,TP] = f I3 ~ T~ and f P ~ are the
structure constants antisymmetric in their indices and sat-
isfy the Jacobi identity.

In what follows, we recapitulate the results of Ref. [2].
The effective action in D = D + d dimensions (D = 10
for the present case) is

d~xQ —ge @

where G p is the internal metric and g~, the D-
dimensional spacetime metric, depends on the coordinates
x~. The dimensionally reduced action is

Sz) = d xQ ge ~I,R + g~' ting i),—P

,2 H~, pH~'~ + Ii tr(cj„M ' t)~M)

(3)

&& [R(g) + g~' ct„Ptl;-P —
i2 H~;pH~ ]. (1)

Note that 5 is the bosonic part of the heterotic string
effective action in critical dimension. 0 is the field
strength of antisymmetric tensor, and @ is the dilaton.
Here all the field backgrounds have been set to zero. We
consider the theory in a spacetime M X K, where M is
D-dimensional spacetime and the coordinates on M are
denoted by x&. The internal space A is d dimensional
and (y ), ct = 1, 2, . . . , d, are the coordinates. When the
backgrounds are independent of y and the internal space
is taken to be a torus, the metric g~; can be decomposed
as
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Here @ = @ —
2 ln detG is the shifted dilaton,

H„,~ = B~B,~ —
2

M' g;~+1 + (cyc. perms. ), (4)
+', is the 2d-component vector of field strengths

f F(&)~ )
+p, v

~
F(2) (5)

Al l = B~ + B pA~') (recall B p
= B p), and the

2d X 2d matrices M and g are defined as
-G-~B

BG ' G —BG 'B

BpMp A~A.

(6)
The action (3) is invariant under a global O(d, d) transfor-
mation,

M —O'MA, AqA' = q,

52 = d xQ g[R + s tr(A~M ' &~M—)). (8)

Notice that, for constant @, the 8~ @ 8~ P term is absent.
Since we are considering two-dimensional spacetime, we

where A E O(d, d), (7)
and the shifted dilaton @ remains invariant under the
O(d, d) transformations. Note that M E O(d, d) also and
MT gM = g. Thus if we solve for a set of backgrounds
M, +, and @, satisfying the equations of motion, they
correspond to a vacuum configuration of the string theory.

Let us consider the reduced action, Eq. (3), in 1 + 1

dimensions. Note that the H~, zH~ 1' term does not con-
tribute to the action in two spacetime dimensions. More-
over, we assume that the dilaton P entering the action (3)
is constant. We recall that a four-dimensional action ad-
mits solitonic string solution [8,9] when the backgrounds
are such that @ = const, H~, ~

= 0, +'„= 0, and the
metric as well as the moduli depend on only two coor-
dinates. Such a theory is an effective two-dimensional
theory. Recently, Bakas [10] has considered a four-
dimensional effective action with 6c = 0, where 6c is
the central charge deficit. One can interpret that the action
arises from compactification of a string effective action in
critical dimensions through dimensional reduction where
M and +', are set to zero [see Eq. (3)]. Furthermore,
the axion (arising from duality transformation on H~„q)
and the dilaton can combine to define a complex field
which transforms nontrivially under one SL(2,R). Then
the existence of two commuting Killing symmetries (that
all backgrounds depend only on two coordinates) is ex-
ploited to derive a form of the metric such that the ac-
tion is invariant under another SL(2,R), and the resulting
theory is described by a two-dimensional action. Thus,
this dimensionally reduced theory has a symmetry which
can be infinitesimally identified with the O(2,2) current
algebra [10]. In contrast, in the present investigation, M,
expressed in terms of moduli G and B, is spacetime de-
pendent and other backgrounds fulfill the restrictions of
constant P and vanishing j', . The relevant action is

can choose the spacetime metric g~, = e ' g~, . Here

g~, is the flat diagonal spacetime inetric = diag( —1, 1)
[not to be confused with the O(d, d) metric]. The Einstein
term of the action in two dimensions is a topological term
and it does not contribute to the equations of motion.
Thus the equations of motion associated with the matrix
M is of primary importance to us. It is more convenient
to go over to an O(8,8) metric o., which is diagonal and is
related to g by the following transformation: cr = p gp,
where

(9)

and matrix elements 1 stand for the d X d unit matrix.
Then, M ~ U = p Mp and the U satisfies the prop-
erty 'U = U and a. 'Uo. = 'U '. The action Eq. (8)
takes the form

~("lu = —uA("l.
The set of (A("l) are recursively defined as

(12)

dy npA'"'(t, y)

dyt&pA(")(t, y)

+ [~p(t, y). A'"'])

with A = T, T being a generic form of an infinitesimal
transformation of the group g, and T can be expanded as
a linear combination of the set [T ). Furthermore,

A('l = [X,, T] = dye% p(t, y), T], (14)

A( 1 = [Xz, T] + 2[Xi, [Xi, T]], (15)

where X~ = f' dy A(t, y) and X2. satisfies the equation
1

B)X2 = BpXi —
2 [BiXi,Xi].

In what follows, we present the essential steps to
construct the generators of the Kac-Moody algebra and
demonstrate the existence of the algebra for the theory
described by Eq. (9). Here we adopt an elegant and

d xiR + s~ tr(R~'U ' B~'U)).

The equations of motion for the 'U are

A~M„= 0,

and we observe that A.~ is a pure gauge. Therefore,
[23~, 23„] = 0, with D~ = B~ + A.~. It is worthwhile
mentioning that M ~ coincides with the vector field
introduced in Ref. [1] to construct the infinite set of NCC.
The equations of motion (11) and the curvaturelessness
properties of A. ~ were utilized to construct these currents
by employing the known techniques [11]for our problem.

The infinitesimal transformations, on the O(d, d) valued
function 'U, associated with the infinite set on NCC are
given by
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economic technique due to Devchand and Fairlie [12]
to derive the algebra. Let us introduce the generating
function for the A's as

(~i —C~o)S = s [~o S].
and 5 can be expressed as

(17)

(16)
0

using the recursion relation Eq. (12) and the properties of
A.~, we can show

~ Sp(C) = — KS-(6), Sp(C)] —f p S (C))

[94 (g), Wp(g)] = f p

, 'U[eS, (C) —CS,(r)]

(24)
after some computations [7,12], and a similar equation
holds for BpS (g) with appropriate argument and indices.
Using the above relations in Eq. (22), we arrive at

S(6) = Q(s)TQ '(s)
Now Q satisfies the equation

6
X 'U (y)

(25)

BX =48„e"'tr gM, +ls + —lQ ~ QT)

(21)
In order to derive the algebra, first we define the genera-

tors of the transformations and then evaluate commutators
of two transformations. Now, we label each transforma-
tion with an index. For definiteness, we choose two trans-
formations to be 6 'U = —US and Bp'U = —'USp,
Ao appearing in the expansions, Eq. (16), for S and Sp
are taken to be T and Tp, respectively, and these gen-
erators satisfy [T,Tp] = f p~T~ Of course, . we could
have chosen any two arbitrary generators T and Tb E g;
in that case each of these generators will be expanded in
terms of the basis JT~) and the arguments we are going to
present below will go through in that general setting too
with some extra calculations. However, we have made
this choice here to facilitate simplicity in computations
and bring out the essence of the arguments. Let us define
(following Dolan [7]),

(g) = d y US
6

y
Then the commutator of two transformations is

(22)

[~ (s ), ~p(C)] = d'y'U [S.(r), Sp(r)],

d'y 'U [~-Sp(C) —~pS-(6 )]
6

X 6'U (y)
The variation 6 Sp(g) can be expressed as

(23)

Q(~i —k~o)Q ' = —s ~o
and Q is defined as limit Q = lim~ Qiv with

Q~ (20)

We can check by explicit calculations that coefficients of
s and gz in Eqs. (18) and (19) give us Eqs. (14) and (15).

Moreover, it can be shown following Ref. [12] that,
under an infinitesimal transformation, 6'U = —'US, the
variation of the Lagrangian density (10) is

This elegant form of this equation was derived in
Ref. [12]. The Kac-Moody algebra is derived as follows:
Note that W (g) can be expanded in a power series in g
as

0

inserting the expansion Eq. (27) in the commutator
Eq. (28) and comparing the coefficients of $ g" on both
sides we arrive at the desired Kac-Moody algebra

[~m ~ n] f ~ (m+n) (27)

A few remarks are in order here: The NCC constructed
in Ref. [1] can be expressed in terms of 'U E O(8, 8)
and is related to the M matrix: 'U = p M p. An
arbitrary element of O(d, d) can be expressed in terms
of 2d —d independent parameters. But we know that
'U, alternatively M, is determined in terms of the moduli
G and B and thus has only d parameters. In fact, it
was shown by Maharana and Schwarz [2] that the moduli
appearing in the effective action, parametrize the coset
O(d, d)/O(d) S O(d) and thus the matrix valued function
'U can be expanded on a basis which belongs to the coset
O(8, 8)/O(8) S O(8). Indeed, the NCC were derived in
Ref. [1]by going over to the coset reformulation [2] of the
effective action (9) and then constructing a curvatureless
vector field A. ~. Notice that if we had not set to zero
the U(1)'" gauge field action in S the resulting coset
would be O(8,24)/O(8) O(24) and all our arguments
would still be valid. Recently, it has been recognized that
the string effective actions in lower dimensions exhibit
a rich symmetry content. The dimensionally reduced
effective theory (coming from ten-dimensional heterotic
string action with the inclusion of 16 Abelian gauge
fields) in four dimensions possesses two symmetries [3]:
O(6,22;Z) T duality and SL(2, Z) S duality [13]. For
D = 3, theory has a bigger invariance group, O(8,24;Z),
and it has been shown that SL(2, Z) and O(7,23;Z) T
duality are a part of this group [14]. Now, we see that in
two spacetime dimensions there is an infinite-dimensional
symmetry algebra.

207



VOLUME 75, NUMBER 2 PH YS ICAL REVIEW LETTERS 10 JULY 1995

To summarize, we have demonstrated the existence
of symmetry transformations associated with each of
the infinite sequence of conserved currents in the two-
dimensional effective theory. The generators of the infini-
tesimal transformations, associated with these currents,
satisfy Kac-Moody algebra which is very intimately
related with the T duality group.
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