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Renormalization Group Theory of Hysteresis
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We apply renormalization group theory directly to the first-order phase transition of the large-N
model driven linearly by an external magnetic field H = Ht, where H is the sweeping rate. Novel
dynamic scaling forms for the magnetization, the structure factor, and the area of hysteresis loop
are M(H, t, T) = f(H' t, Ht t T), C(k, H, t, T) = H t f'(H ' k H' t, Ht" y T), and A =
H't g(Ht" lt T), respectively, where T is the temperature of the system, d the spatial dimensionality,
k the wave number, and f, f', and g scaling functions. These results show that the rate of the external
driving field can serve as a scaling parameter to study hysteresis.

PACS numbers: 75.60.—d, 64.60.Ak, 64.60.Cn, 82.20.Mj

Hysteresis is a ubiquitous phenomenon in first-order
phase transitions. It is, however, a complex process
of a dynamic and nonlinear nature that eludes serious
treatment, both experimentally and theoretically. There
is an empirical law by Steinmetz [1], dating back to last
century, showing that on real magnetic systems the area
of typical hysteresis loops A is given by

A = H(I, (1)
where Ho is the amplitude of the oscillating external
magnetic field. There are also a geometrical theory
of hysteresis [2), a statistical theory of the nonlinear
relaxation function to describe metastable decay [3], and
a hysteresis criterion based on rate competition [4]. Only
recently, however, is there an increasing interest [5—15]
in it since the rediscovery of the scaling law, Eq. (1), in
the large-N model by Rao, Krishnamurthy, and Pandit [5].

Most current work on the scaling of hysteresis has con-
centrated on the energy dissipation in a cycle, represented
by the area of the loops. Theoretical [5,6,8—10,12—15]
and experimental [7,11] results have demonstrated that the
energy dissipation per cycle varies as a power law as

A=HoA (2)
for low amplitude Ho and frequency A of the sinusoidal
driving field. In this limit of low Ho and fl, the field is a
linear function of time t with a proportionality coefficient
HoA and thus n = P. Therefore, for the directly linear
driving field with a sweep rate H [12,15],

H=Ht, (3)
A=H (4)

Logarithmic corrections to the scaling [8,12] and dynamic
scaling have also been proposed [13].

For the two-dimensional (2D) Ising model [6] and a
cellular dynamic system [9], it was found that ct —0.46
and p —0.36. For mean-field models [7,15] and the
double hysteresis loops in the N model in the large-X
limit [15], ot = p = 3, with a nonzero adiabatic area
[14,15]. In most regions of the phase diagram of the

large-N model, which is of concern here, qualitative
analysis [8] and singular perturbation theory [12] all

produce ct = p = 2, and this is also confirmed by direct
numerical integration [8,12,15].

As phase ordering (in zero external field) of the same
system is governed by the zero-temperature fixed point
[16], it seems plausible that the driven first-order phase
transition between the "up" and "down" magnetizations
is also controlled by the same fixed point. In fact, it has
been shown [12] that the whole dynamics, not just the
exponents, is universal, independent of the particular form
of the free energy. Also, for a system of 2D planar spins,
the exponent n, like the corresponding critical exponent
in the same system, has been shown to vary continuously
with temperature [10].

The universality of the dynamics and exponents sug-
gests that a renormalization group (RG) theory might be
fruitful. Because of the continuous symmetry, there are
gapless Goldstone modes. As pointed out in Ref. [12],as
H ~ 0, the characteristic length of the system diverges,
and fluctuations affecting the magnetization M(t) inside
each domain partially cancel. This is the underlying pic-
ture of the renormalization analysis. Noticing that RG
theory has been successfully applied to spinodal decom-
position and phase ordering [16,17] but not directly to
hysteresis, following the same line of reasoning, we show
for the first time in this paper that RG may apply as well
to driven transitions, which have been proved to be a good
context to study hysteresis. The principal new ingredient
is that, for a system linearly driven by an external field
given in Eq. (3), H has also tobe scaled as H' = b ' YH,
where —y = 0 and —z = —2 are the eigenvalues of time
and real space order parameter at the zero-temperature
fixed point, respectively. As a consequence, the magneti-
zation and the structure factor can be cast into nicely scale
invariant forms, namely,

M(H, t, T) = f(H t t, H( )~ T)

0031-9007/95/75(10)/2027(4)$06. 00 1995 The American Physical Society 2027



VOLUME 75, NUMBER 10 pHYSICAL REVIEW LETTERS 4 SEpTEMBER 1995

—d/4 &
—1/4 H 1/2 t H(d —2)/4 T)C(k, H, t, T) = H / f'(H k, H

h T the temperature of the system, pm d the s atialw ere is
scalli1alit k the wave number, and f an~ ~

'
gdimensiona i y,

in Fi . 1 show that thefunctions. Numerical results in Fig. s ow a

~ &
~for different H and T collapseoriginal curves in ~a&~or

~ ~ ~

completely into one sin~e single line in the transition region
owing to the difficulty in clarity in the presentation

1 f 3D surfaces, the structure factor isof the over ap o
= 0.005not shown ere~.h h ~. Note that the curve with H =

itsis not expecte to over apd rlap with the others, because i s
lowtemperature as no eh t been rescaled. For sufficient y ow

d H the area of the hysteresis loopstemperature an, e
d from E . (5)f M dH per cycle can be readily obtained from q. ~

to be

where the scaling function g xx is a small correction
E &4z. Moreover, these results areto the scaling in q.

indepen ent o ed f th detailed form of the free energy.
ion for the N-We start from the Langevin equation for t e

component order parameter tIi(x),

atI&(x, t) aF[tI&]
( )64 (x, t)
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and correlator

and the Ginzburg-Landau-Wilson free energy functional
is given by

d"x c(V@) + r4 + (tI~ )

(a) 4
~g KIRI

—2WN H

where r, c, and u are coupling constants and is the
kinetic coefficient. In the large-N limit, the dynamic
equation reduces to [17,18]

dt
= —A(RM + H), (11a)
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FIG. 1. (a) Curves of magnetization v
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(12)

where the subscripts s and h refer to integration over the

rates, the structure factor of the hard modes can follow its
= 0. As a consequence,steady variation even beyon

T T
ck2 + H/M

(13)

(k t) is the transverse structure factor (thethe J
will be dropped below) and the integra ts cu o a

Consider a system which initially equilibrates in a
negative externa e1 fi ld. It is then driven by the field

in E . ~~3~ with a small positive H, such that, whengiven in q. wi
t = 0, H = 0. Following the standard proc edures of
RG, in particular Ref. [17], first the "hard" modes with
A/b ( k ( A (b ) 1) are eliminated by solving t e

f r the time evolution of these mo es,
and substituting the solution into the equation or t e
"soft" modes wit h k ( A/b. The only effect after this

odesstage is t at, or e yh, f th d namic equation of the soft mo es,
R changes to

R(t) = r + uM(t)2 + uS, (t) + uSh(t),
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x = x'/b, (15a)

by+d/2C l

Accordingly,

M(t) = (4) = b M'(t'),

C(k, t) = (C (t)C ~ (t)) = b '"C'(k', t'),

s(t) = b"s'(t').

(15b)

(15c)

Substituting Eqs. (15) into Eqs. (11), taking into ac-
count Eq. (3) and rewriting the resultant equations in the
original form with primed parameters replacing the origi-
nal ones, we obtain as the recursion relations

c = b c, (16a)

Tf bz —d —2y T (16b)

H' = b2z —yH (16c)

R'(t') = r' + u'M' (t') + u'S'(t') = b'R(b't), (16d)

and with the help of Eqs. (12) and (14) we have two
further relations

I b z+2y (16e)

(16f)

where r = r + uTK, /c = r(T, —T)/T, and T, =
rc/uK, . —
For the zero-temperature fixed point, it is required that

c and r/u be finite [17],which leads to

z=2, y =0. (17)

Consequently, r' = b ~ and u' = b u. Coefficients of
higher order terms in the Hamiltonian, such as (tIi ),
also transform in the same way, besides renormalizing
the lower ones, and so the Hamiltonian scales as b"
Therefore, the results are independent of the detailed form
of F[&Ii], which has been confirmed [12,15].

As the transformation of the Hamiltonian can be taken
into account by the inverse transformation of temperature
b " [16], we need consider only temperature and,

Therefore, for small rates and hence small H, H/M can
be neglected compared to the large k of the hard modes
and we have

Sh(t) —TK, (1 —b ")/c, (14)

where K, = 2 "+'7r " A" /(d —2)I (d/2) and I is
the gamma function. Thus no new terms are generated by
the coarse graining.

Next the soft modes are rescaled via k = k'/b in order
to restore the ultraviolet cutoff for these modes to its
original value A, while time t is simultaneously rescaled
via t = b't' as required by scale invariance. We adopt
the convention of [19],i.e.,

therefore, we have

M(H, t, T) = M'(H', t', T') = M(H', t', T')
= M(b H, b t, b T), (18a)

C(k, H, t, T) = C'(k', H', t', T') = C(k', H', t', T')
= b"C(k/b, b H, b t, b "T) . (18b)

Setting b = H ' ()1), we finally obtain the central
results of this paper, Eqs. (5) and (6).

It is readily seen that for d = 2 T is invariant and
accordingly o. is exactly equal to 2. For d ) 2, when
T and H are sufficiently low, H~" ~~ T is small, and n

1
also approaches 2. For larger H, T has to be concurrently
lowered to reduce thermal fluctuation in order to obtain
morphology similar to the smaller H ones. These results
are completely confirmed on referring to Fig. 1. One
point should be made, however, and this is that in the
limiting case T = 0 H must diverge and accordingly
the transition field shifts to a finite value, the spinodal
point (H„M, ), and the dynamics reduce to the mean-field
result, because the equilibrium structure factor is equal to
zero identically. In this case, expanding the magnetization
at the spinodal point as in Ref. [7], and then applying the
rescaling procedures described above, we arrive at a scale
invariant form for the magnetization such as

M(H t) —M, + H' f(H t), (19)

[1] C. P. Steinmetz, Trans. Am. Inst. Electr. Eng. 9, 3 (1892).
[2] I. D. Mayergoyz, Mathematical Models of Hysteresis

(Springer-Verlag, Berlin, 1991).

where f is also a scaling function. Thus n crosses over
to 3 [7].

The relevance of the theoretical hysteresis loops to the
experiments and previous theories has been discussed at
length in Ref. [5]. We would just point out that the highly
simplified large-N model cannot be expected to agree
quantitatively with experiment. Deliberate experiments,
however, have appeared that come closer to the theories.
Therefore such attractive scaling forms as Eqs. (5)—(7)
will quite probably stimulate further experimental and
theoretical investigations that finally will get hysteresis
under control.

In conclusion, we would like to emphasize the idea that
can be extracted from this work. Hysteresis is essentially
an irreversible process. Therefore, a complete description
should take into account the variable of the process. The
RG approach and its resultant dynamic scaling forms show
that the rate of the linear driving field can serve as a
variable not only for characterizing but also for scaling the
properties of hysteresis. The underlying physical picture
is that the morphology of different scanning rate is similar.
This might open a new way to approach hysteresis.
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